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ABSTRACT OF DISSERTATION

RECOVERING LOCAL NEURAL TRACT DIRECTIONS AND
RECONSTRUCTING NEURAL PATHWAYS IN HIGH ANGULAR

RESOLUTION DIFFUSION MRI

Magnetic resonance imaging (MRI) is an imaging technique to visualize internal struc-
tures of the body. Diffusion MRI is an MRI modality that measures overall diffusion
effect of molecules in vivo and non-invasively. Diffusion tensor imaging (DTI) is an
extended technique of diffusion MRI. The major application of DTI is to measure
the location, orientation and anisotropy of fiber tracts in white matter. It enables
non-invasive investigation of major neural pathways of human brain, namely tractog-
raphy. As spatial resolution of MRI is limited, it is possible that there are multiple
fiber bundles within the same voxel. However, diffusion tensor model is only capable
of resolving a single direction. The goal of this dissertation is to investigate complex
anatomical structures using high angular resolution diffusion imaging (HARDI) data
without any assumption on the parameters.

The dissertation starts with a study of the noise distribution of truncated MRI
data. The noise is often not an issue in diffusion tensor model. However, in HARDI
studies, with many more gradient directions being scanned, the number of repetitions
of each gradient direction is often small to restrict total acquisition time, making
signal-to-noise ratio (SNR) lower. Fitting complex diffusion models to data with
reduced SNR is a major interest of this study. We focus on fitting diffusion models
to data using maximum likelihood estimation (MLE) method, in which the noise
distribution is used to maximize the likelihood. In addition to the parameters being
estimated, we use likelihood values for model selection when multiple models are fit
to the same data. The advantage of carrying out model selection after fitting the
models is that both the quality of data and the quality of fitting results are taken
into account. When it comes to tractography, we extend streamline method by using
covariance of the estimated parameters to generate probabilistic tracts according to
the uncertainty of local tract orientations.

KEYWORDS: diffusion-tensor MRI, high angular resolution MRI, tractography
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Chapter 1 Background

In this chapter we give a literature review of diffusion-weighted imaging (DWI) and

diffusion tensor model to introduce the background of the research work of this thesis.

Introduced in the mid-1980s (Le Bihan, 1986), diffusion magnetic resonance imag-

ing (MRI) is a specific MRI modality that measures the overall diffusion effect of water

molecules or some other metabolites in vivo. Diffusion anisotropy of water molecules

in white matter of human brain (Chenevert et al., 1990) was reported in early 1990s.

Diffusion tensor imaging (DTI) is an extended technique of diffusion MRI. It is

important because it enables the non-invasive investigation of major neural pathways

of human brain, namely tractography. The tractography can be used for visualization

and analyses of human brain data. And, diffusion anisotropy has proven useful when

studying pathologies related to changes in white matter tissues (Pfefferbaum and

Sullivan, 2003; Pagani et al., 2005; Chua et al., 2008). More complex diffusion models

have been proposed as well. However, DTI is still important because it supports many

important applications of human brain studies and the model only has six parameters,

which can be solved by conventional mathematical methods.

1.1 Diffusion-Weighted Imaging

Diffusion MRI produces images of biological tissues weighted with local characteris-

tics of water diffusion (Le Bihan et al., 2002). New techniques have been put forward

to overcome the insufficiency of the old ones. The plain diffusion MRI can only char-

acterize isotropic diffusion, and DTI can describe Gaussian diffusion (Basser et al.,

1994b).

The signal attenuation observed in a voxel of diffusion MRI image reflects the
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overall effects of water diffusion within that voxel (Le Bihan et al., 2002). With

anisotropic diffusion, the effects of water diffusion vary when the gradient is applied

at different directions. The gradient direction, or the gradient, is represented by a unit

vector ~g, which is always written in Cartesian coordinates. In some studies (Frank,

2002; Özarslan and Mareci, 2003; Descoteaux et al., 2006), it is more convenient to

express the unit vector ~g in spherical coordinate (ρ, θ, φ) with ρ = 1:

~g =


x

y

z

 =


sin θ cosφ

sin θ sinφ

cos θ

 , (1.1)

where θ and φ represent the polar angles (0 ≤ θ ≤ π) from the z-axis and the

azimuthal angle (0 ≤ φ < 2π) in the x y-plane from the x-axis. This notation is

called physics convention, while in the mathematics convention as used in some of

the references, θ and φ are reversed. An illustration of the spherical coordinate system

in the physics convention is drawn by Frank (Frank, 2002).

We use ~gi, i = 1, ..., n, to denote the n gradients actually applied in DWI, and

use ~g to represent an arbitrary direction on the unit sphere. The signal attenuation

obtained along each gradient direction ~gi can be viewed as samples of the diffusion

profile.

Anisotropic Diffusion in the Human Brain

In human brain gray matter, the measured diffusivity is independent of the orienta-

tion of the tissue (Basser and Jones, 2002). But for tissues such as cardiac muscle

and brain white matter, the measured diffusivity depends upon the orientation of

the tissue (Basser and Jones, 2002). Water diffusion in the brain is not isotropic

because axonal membranes and myelin sheaths of white matter fibers running in par-

allel prevent the motion of water molecules in directions other than along their own

orientation (Le Bihan et al., 2001).
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Plain Diffusion Imaging

The amount of the diffusion signal loss with gradient applied is described by the

Stejskal-Tanner formula (Stejskal and Tanner, 1965):

S = S0e
−bD, (1.2)

where

b = γ2G2δ2(∆− δ/3) (1.3)

is often referred to as the b-value. In Eq. 1.2, S is the signal attenuation with the

diffusion gradient, S0 is the signal attenuation without the diffusion gradient, γ is the

gyromagnetic ratio, G is the strength of the gradient pulse, δ is the duration of the

pulse, ∆ is the time between the two pulses, and D is the diffusion constant (Mori

and Barker, 1999).

When only isotropic diffusion is involved, diffusion constant D is independent

of gradient direction. In plain diffusion imaging, diffusion is fully represented by

diffusion constant D, which is a scalar. The diffusion constant D of each voxel can

be mapped to create an apparent diffusion constant image (Mori and Barker, 1999).

Diffusion-Weighted Imaging

In anisotropic water diffusion, the amount of diffusion signal loss depends on the

direction of the gradient applied. In DWI, the signal loss is measured with different

gradients applied.

The images produced with gradient applied in DWI are called diffusion-weighted

images, or weighted images, bearing the same acronym as the technique of DWI. In

DWI, signals without gradient applied are also measured. The images of unweighted

signals are called unweighted images, often referred to as the S0 images. When a large

number of gradient directions are used to increase the angular resolution so that the

complex detail of the diffusion profile can be captured, the technique is often called
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high angular resolution diffusion imaging (HARDI) (Tuch et al., 1999; Frank, 2001;

Tuch et al., 2002).

Similar to the diffusion constant D in Eq. 1.2, we can calculate diffusion coefficient

Di at each gradient direction by

Di = −1

b
ln
Si
S0

, (1.4)

and Si/S0 is called spin-echo attenuation. The signal strength S meansured at any

gradient direction and its corresponding diffusion coefficient D can be considered

as functions of gradient direction ~g. Therefore we have Si = S(~gi), and we define

apparent diffusion coefficient (ADC) profile (Alexander et al., 2002) as

d(~g) = −1

b
ln
S(~g)

S0

, (1.5)

The estimation of d(~g) from Di may be improved by using more gradient directions.

The ADC profile can therefore be visualized in spherical coordinate (Alexander et al.,

2002; Tuch et al., 2002; Özarslan and Mareci, 2003) and the surface may also be

colored by function value (Frank, 2001; Descoteaux et al., 2006; Frank, 2002).

In traditional or “plain” DWI, the trace of D, or the mean diffusivity (MD), is

estimated by applying three gradients. It can be a useful technique for diagnosing

vascular strokes in its acute stage (Moseley, 1990), but the MD does not make it

possible to describe anisotropy. DWI is also the basis for more advanced diffusion

models or imaging techniques, such as DTI and HARDI. At least six weighted images

are needed in DTI studies in order to estimate the diffusion tensor of each voxel.

1.2 Diffusion Tensor Imaging

The plain diffusion imaging measures the diffusion constant, making it sufficient for

isotropic diffusion. For general diffusion situations, the plain diffusion model is insuf-

ficient. Assuming that the anisotropic diffusion may be characterized with a Gaussian
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function, Basser et al. proposed to use diffusion tensor to describe the local diffusion

and introduced DTI (Basser et al., 1994b), by using the following formula:

S(~g) = S0e
−b~gTD~g, (1.6)

where D is a symmetric positive definite tensor,

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (1.7)

In Eq. 1.6, the term ~gTD~g replaced the diffusion coefficient D in Eq. 1.2.

Diffusion tensor can be computed from diffusion-weighted signals obtained from

six different gradient directions and the unweighted signals, by solving the linear

system defined by taking the natural logarithm on both sides of Eq. 1.6. Using

more gradient directions to get a least squares (LS) solution will in general improve

the accuracy of the tensor estimation (Jones et al., 1999; Papadakis et al., 2000;

Hasan et al., 2001). When the noise level is high, non-linear LS is preferred to linear

LS (Kingsley, 2006b), because the log transform would make the symmetric noise not

symmetric on the log scale.

DTI provides information about both the extent of diffusion anisotropy and its

orientation.

Diffusion Tensor Diagonalization

Because D is symmetric and positive definite, it can be rewritten in terms of its

eigenvalues λ1, λ2, and λ3 (λ1 ≥ λ2 ≥ λ3 ≥ 0), and the corresponding eigenvectors

~e1, ~e2, and ~e3 as (Basser et al., 1994b; Basser and Pierpaoli, 1996):

D = RΛR−1, (1.8)

with orthogonal matrix

R =

(
~e1 ~e2 ~e3

)
(1.9)
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and

Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 . (1.10)

The eigenvector associated with the largest eigenvalue, ~e1, is often called the prin-

cipal eigenvector. It is generally believed that local fiber orientation is parallel to

eigenvector ~e1.

According to Euler’s rotation theorem, any rotation may be described by only

three angles. In the so called “x-convention”, the rotation is given by Euler angles

(ϕ, ϑ, ψ), where ϕ is a rotation about the z-axis, ϑ ∈ [0, π] is a rotation about the

former x-axis, and ψ is a rotation about the former z-axis again. The rotation R can

be written as

R = Rψ ·Rϑ ·Rϕ, (1.11)

where each matrix contains a single Euler angle and the component rotations are

given by

Rϕ =


cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

 , (1.12)

Rϑ =


1 0 0

0 cosϑ sinϑ

0 − sinϑ cosϑ

 , (1.13)

and

Rψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 . (1.14)

The Euler angles that decide a rotation matrix R is not unique. Two groups of Euler

angles can be extracted from the rotation matrix R, if R3,3 ≡ cosϑ 6= ±1. Otherwise,
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the rotation matrix R reduces to a 2D rotation, from which only ϕ+ψ or ϕ−ψ can

be decided.

Anisotropy Measures

Diffusion anisotropy indices can be used to quantify the amount of anisotropic dif-

fusion. Most popular anisotropy indices are defined in the diffusion tensor model,

although more complex diffusion models have also been used (Frank, 2002; Alexan-

der et al., 2002; Özarslan and Mareci, 2003; Chen et al., 2004, 2005).

MD (Basser et al., 1994b) is the earliest anisotropy measure, which is defined as

MD =
λ1 + λ2 + λ3

3
. (1.15)

Fractional anisotropy (FA) (Basser and Pierpaoli, 1996) is the most widely reported

diffusion anisotropy index. Relative anisotropy (RA) (Basser and Pierpaoli, 1996) is

also used in studies regarding anisotropy. They are defined as follows:

FA =

√
3

2

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

, (1.16)

RA =

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

√
6λ̄

, (1.17)

where

λ̄ =
λ1 + λ2 + λ3

3
. (1.18)

For an anisotropy index to characterize the degree of anisotropy in DTI, it should

be a monotonic function of some physical quantities, and should be a translation

and rotation invariant (Basser and Pierpaoli, 1996). It can be calculated from the

eigenvalues of diffusion tensor D (Kingsley, 2006a; Skare et al., 2000).
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Limitations of DTI

DTI is an inherently low-signal-to-noise ratio (SNR) technique (Taylor et al., 2004;

Parker, 2004) with low spatial resolution, where each voxel may contain tens of thou-

sands of axons.

DTI tractography corresponds well to major fiber pathways such as the corpus

callosum, but it does not work well in some other fibers (Johansen-Berg and Behrens,

2006). It suffers from two types of errors: the first type of error is caused by spatial

resolution limitation, image noise, artifacts and accumulation of numerical errors;

the second type of error is due to the fact that diffusion tensor model is incapable of

describing non-Gaussian diffusion (Tuch et al., 1999, 2002).

1.3 High Angular Resolution Diffusion Imaging

The current practical voxel size of diffusion MRI is around 2 mm, which is much

larger than the diameter of neural axons. Therefore it is normal that there are

multiple fiber tract orientations within a given voxel. Non-Gaussian diffusion is also

observed at white matter structures, like the corona radiata lateral to the lateral

ventricle (Tuch et al., 1999). The diffusion tensor model is not capable of describing

these non-Gaussian diffusion. As it is much harder to reduce the voxel size than to

increase the number of gradients due to SNR issue, sampling with increased angular

resolution of the acquisition schema is therefore proposed to fully capture the details

of non-Gaussian diffusion (Tuch et al., 1999).

Spherical Harmonics and Higher Order Tensor

Methods to describe the non-Gaussian diffusion profile include spherical harmon-

ics (Frank, 2002; Alexander et al., 2002; Chen et al., 2004) and high order diffu-

sion tensor (HODT) (Özarslan and Mareci, 2003). Actually, there is an analytical

relationship between the spherical harmonics coefficients and the elements of the
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HODT (Özarslan and Mareci, 2003; Descoteaux et al., 2006). These model-free

methods are useful for quantifying anisotropy (Frank, 2002; Özarslan and Mareci,

2003; Özarslan et al., 2005), however fiber orientations cannot be recovered directly,

given that there is no simple correspondence between fiber tract orientations and the

maxima of the diffusion profile in non-Gaussian diffusion.

BiGaussian and Gaussian Mixture Model

The biGaussian model is proposed to assess two tract orientations within the same

voxel (Alexander et al., 2001; Tuch et al., 2002; Parker and Alexander, 2003) with

little or no exchange between the compartments:

S(~g) = S0(fe−b~g
TD1~g + (1− f)e−b~g

TD2~g), (1.19)

where f > 0 is the volume ratio. As each compartment of Eq. 1.19 is a Gaussian

diffusion, the model is a weighted mixture of two Gaussian compartments. When

with exchange between the two compartments, the corresponding model (Alexander

et al., 2001) is

S(~g) = S0e
−b~gT (fD1+(1−f)D2)~g. (1.20)

However, for two distinct tissues within a single voxel, Eq. 1.19 is more reasonable to

describe the effects than Eq. 1.20 (Alexander et al., 2001), which does not work well

with large b-value (Frank, 2001).

The angle between the principal directions of the two tensor compartments in

biGaussian model is given by

τ = arccos(|~e1 · ~e′1|), (1.21)

where ~e1 and ~e′1 are the two principal eigenvectors of the two tensor compartments.
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The generalization of biGaussian model Eq. 1.19 is Gaussian mixture model with

K Gaussian compartments:

S(~g) = S0

K∑
i=1

fie
−b~gTDi~g, (1.22)

where volume ratio fi > 0 and is subject to

K∑
i=1

fi = 1. (1.23)

1.4 Visualization

Visualization of diffusion-weighted data is both the objective of image processing and

a useful tool to explore the three-dimensional images.

MRI images can be visualized as scalar images. T1-weighted images are usually

displayed using signal magnitude directly. Anisotropy indices are often used to vi-

sualize diffusion-weighted images or diffusion tensor images. Traditionally, diffusion-

weighted image is shown as an MD map. In DTI studies, diffusion tensor image is

often displayed as an FA map. When displaying scalar images, we can use different

colormaps to scale or enhance the data.

Vector field can be used to visualize principal eigenvectors of diffusion tensors.

A small arrow, or just a small line segment, is sometimes used to show the fiber

orientation recovered from each voxel (Peled et al., 1998). When Gaussian mixture

model is used, multiple glyphs can be used in the same voxel to present multiple

orientations. The length of the arrow or line segment can also be used to encode a

scalar, such as FA. Similarly, a diffusion colormap combines the scalar image and a

vector field by encoding the orientation of principal eigenvector and FA of each voxel

in RGB space, providing more information about white matter fiber tracts (Douek

et al., 1991; Pajevic et al., 1999). Some major nerve pathways can even be easily

identified in diffusion colormap. When accurate diffusion colormap is desired, each
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individual’s diffusion tensor data should be registered to standard space, whereas MD

and FA are rotationally invariants and can be used for comparison directly.

More complicated glyphs are also used to visualize diffusion profiles (Westin et al.,

2002). For diffusion tensor model, diffusion ellipsoid is a standard method to visualize

tensors (Basser et al., 1994a,b; Pierpaoli et al., 1996), as a tensor can be fully encoded

by the ellipsoid. As mentioned above, for HARDI data, a peanut-like plot is also used

to visualize the ADC profile.

1.5 Motivation

Diffusion MRI is a low-SNR modality therefore we need to pay attention to the noise.

Some methods used in DTI and HARDI studies assume that the noise is normally

distributed in diffusion-weighted images. The Gaussian approximation of Rician noise

is good for high SNR value (Gudbjartsson and Patz, 1995). However, Rician noise

introduces a significant bias into diffusion-weighted signals if the noise level is high.

The noise in diffusion-weighted signals can be regarded as Gaussian noise, if Rician

noise removal is carried out and the number of repetitions is large. But the number

of repetitions in typical DTI studies and most HARDI studies is small. Therefore

we need investigate the impact of Rician noise. We also want to verify the noise

distribution of diffusion-weighted images because it is reported that the distribution

is hard to verify (Gudbjartsson and Patz, 1995).

Better tractography results help neurosurgical planning and provide better un-

derstanding of the brain (Wakana et al., 2004; Mori and Wakana, 2005). However,

partial volume effect (PVE) has negative impact on both tractography algorithms and

anisotropy measurements. Diffusion-weighted images often have relative large voxel

sizes compared to the diameters of some fiber tracts. Therefore voxel-based group

studies on diffusion-weighted data are often affected by PVE (Cao et al., 2008). Trac-

tography algorithms developed for diffusion-tensor model often fail to pass regions
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containing crossing fiber tracts. Therefore, we would like to fit Gaussian mixture

model to diffusion-weighted data so that anisotropy measurements defined for diffu-

sion tensor model can be estimated more accurately and crossing fiber tracts can be

reconstructed.

1.6 Organization

The dissertation is composed of seven chapters. The following chapters are organized

as follows:

• In Ch. 2, the research focuses on Rician noise of diffusion-weighted images. We

study the noise distribution of image intensity values stored as 12-bit integers,

which are truncated or rounded from the image magnitudes. Noise distribution

verification is carried out using phantom data as the noise distribution is the

basis of remaining chapters.

• In Ch. 3, we present a fast method computing spherical harmonic for several

widely used gradient schema. Spherical harmonic is an important representation

of functions on the sphere, which are widely used in HARDI.

• In Ch. 4, we fit different diffusion models to data using maximum likelihood

estimation (MLE) method. This chapter is based on noise distribution discussed

in Ch. 2. When fitting models to data, we do not use any feedback from tracking

algorithms or any prior distribution of the parameters.

• Ch. 5 focuses on choosing a better diffusion model from two candidate models,

or selecting the best model from a set of candidate models. Instead of selecting

a complex model when a simple model appears to fail, fitting result of all can-

didate models are evaluated and a best model, in the sense of both accuracy

and simplicity, is selected from two or more models.
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• In Ch. 6, we use the result of Chs. 4 and 5 to reconstruct fiber pathways. We

extend the streamline method by considering the covariance matrix of param-

eters estimated in Ch. 4. This method allows us to reconstruct possible fiber

pathways based on the quality of diffusion-weighted data.

• Ch. 7 provides the conclusion of this dissertation and some possible directions

for future research work.

Copyright c© Ning Cao, 2013.
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Chapter 2 Noise Estimation

In DWI, SNR is always a major concern, as diffusion weighting makes the signal

magnitude lower than that of a typical T1-weighted image. High diffusion weighting

factor and high spatial resolution improve the performance of tractography algorithms

of DWI, but they also decrease the SNR.

Noise estimation and reduction in MRI data has been studied intensively (Gudb-

jartsson and Patz, 1995; Andersen, 1996; Sijbers et al., 1998a,b, 1999; Karlsen et al.,

1999; Sijbers and Den Dekker, 2004; Basu et al., 2006; Kristoffersen, 2007). But

most of the studies overlook the effect of the quantization process in producing MRI

data. In this chapter, we focus on the effects of rounding error introduced by the

quantization process.

2.1 Introduction

It is known that the pixel intensity values measured in magnetic resonance (MR)

images are Rician distributed (Edelstein et al., 1984; Bernstein et al., 1989; Brummer

et al., 1993). The probability density function (PDF) of the Rician distribution or

Rice distribution with parameters ν and σ is

f(x; ν, σ) =
x

σ2
e−

x2+ν2

2σ2 I0

(xν
σ2

)
, (2.1)

where ν ≥ 0 is the underlying noise-free signal amplitude, the scalar parameter σ > 0

is the standard deviation of normal distribution in both the real and imaginary signals,

and I0(x) is the modified Bessel function of the first kind of order zero. The scale

parameter σ is decided by the imaging hardware and protocol, and can be considered

as a constant for the whole image.

In the air background of an MR image, the signal strength ν is 0. The Rician

distribution reduces to the Rayleigh distribution with the scale parameter σ.
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The common method to estimate the “true” signal amplitude A of each pixel in

an MR image is to first estimate the scale parameter σ of the whole image from some

pixels of the air background, then use measured values of the same pixel to estimate

A with the scale paraemter σ being fixed.

To simplify the calculation, we define the local SNR of a pixel as the ratio of signal

amplitude and the scale parameter σ of the Rician distribution (Gudbjartsson and

Patz, 1995):

SNR =
A

σ
. (2.2)

2.2 Theory

Parameter Estimation of the Rayleigh Distribution

The PDF of the Rayleigh distribution is

f(x;σ) =
x

σ2
e−

x2

2σ2 , (2.3)

for x ≥ 0 and σ > 0. It is the special case of the Rician distribution Eq. 2.1 given by

ν = 0. The cumulative distribution function (CDF) of the Rayleigh distribution is

F (x;σ) = 1− e−
x2

2σ2 . (2.4)

The mean or the first raw moment of the population is∫ ∞
0

xf(x;σ) dx = σ

√
π

2
, (2.5)

and the second raw moment of the population is∫ ∞
0

x2f(x;σ) dx = 2σ2. (2.6)

The population mean can be estimated from the sample mean of a set of N

observations {m1, . . . ,mN}. The parameter σ can therefore be estimated using Eq. 2.5

from the sample mean (Gudbjartsson and Patz, 1995) as

σ̂ =

√
2

π

1

N

N∑
i=1

mi, (2.7)
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or using Eq. 2.6 from the second moment (Sijbers et al., 1999; Sijbers and Den Dekker,

2004; He and Greenshields, 2009) as

σ̂ =

√√√√ 1

2N

N∑
i=1

m2
i , (2.8)

which is the maximum likelihood (ML) estimator of the parameter σ.

The Quantization of MR Data

A good estimation of the parameter σ of the Rayleigh distribution is prerequisite to

recovering the underlying signal magnitudes from the noise occupied pixel intensity

values.

Although the floating-point representation is preferred for storing the signal mag-

nitudes in terms of precision, the pixel intensity values are often stored in 12-bit

integers. In this chapter, we consider two ways of rounding a non-negative floating-

point number to an integer: rounding down and rounding to the nearest integer.

Rounding down, or taking the floor, is denoted as bxc, and rounding to the nearest

integer, or taking the nearest integer function is denoted as [x]. For half-integers,

rounding half up, rounding half down and rounding to the nearest even integer do

not make much difference in MR images.

The quantization error is large for small intensity values, especially when rounding

down is used. The CDF of the Rayleigh distribution with σ = 5, 10, and 20, plotted

in Fig. 2.1 show that, about 39% pixels from the Rayleigh distribution with σ = 10

have an intensity value of 10 or less, and 86% pixels have an intensity value of 10 or

less for σ = 5. Therefore we investigate the effect of the quantization error in pixel

intensity values.

When the floating-point numbers are rounded down to integers, the continuous

Rayleigh distribution Eq. 2.3 changes to the following discrete distribution

f(m;σ) =

∫ m+1

m

f(x;σ) dx, (2.9)
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Figure 2.1: The CDF of Rayleigh distribution with σ = 5, 10, and 20. Horizontal
dotted lines show the probability that a pixel intensity value will be found at a value
not greater than 10, for different noise levels.

where m = 0, 1, . . . are intensity values stored as integers in raw MR data; if the

floating-point numbers are rounded to the nearest integer, the discrete distribution

is

f(m;σ) =

∫ m+1/2

max(m−1/2,0)

f(x;σ) dx. (2.10)

Discrete distributions Eqs. 2.9 and 2.10 can be computed by the CDF of the Rayleigh

distribution Eq. 2.4 or numerical integration of the PDF Eq. 2.3. The midpoint rule of

Eq. 2.9 equals evaluating f(m+ 0.5;σ). The PDF of the discrete distribution Eq. 2.9

is plotted in Fig. 2.2 to show that the difference between the Rayleigh distribution

and the discrete distribution can be large.

Noise Parameter Estimation

Although the ML estimator Eq. 2.8 is often considered to be the gold-standard ap-

proach (Sijbers et al., 1999), we notice that the mean estimator Eq. 2.7 performs well

when the floating-point numbers are rounded integers. This can be seen from the

expectation of the first and second raw moments of the discrete Rayleigh distribution

Eqs. 2.9 and 2.10, which are used to estimate the parameter σ.
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Figure 2.2: The discrete PDF Eq. 2.9 for different values of σ. The discrete PDF is
shown using dots together with the Rayleigh PDF Eq. 2.3 for the same σ to show the
difference between them.

When rounding down is used, the first and second raw moments are∫ ∞
0

bxcf(x;σ) dx =
∞∑
k=1

(k

∫ k+1

k

f(x;σ) dx)

=
∞∑
k=1

e−
k2

2σ2 , (2.11)

and ∫ ∞
0

bxc2f(x;σ) dx =
∞∑
k=1

(k2

∫ k+1

k

f(x;σ) dx)

=
∞∑
k=1

(2k − 1)e−
k2

2σ2 . (2.12)

When rounding to the nearest integer is used, the first and second raw moments are∫ ∞
0

[x]f(x;σ) dx =
∞∑
k=1

(k

∫ k+1/2

k−1/2

f(x;σ) dx)

=
∞∑
k=1

e−
(k−1/2)2

2σ2 , (2.13)

and ∫ ∞
0

[x]2f(x;σ) dx =
∞∑
k=1

(k2

∫ k+1/2

k−1/2

f(x;σ) dx)

=
∞∑
k=1

(2k − 1)e−
(k−1/2)2

2σ2 . (2.14)
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There are no closed forms for the sums of the above series. They can be approximated

by finite sum.
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(b) the second raw moment

Figure 2.3: The first and second raw moments of the discrete distribution Eq. 2.9 for
the same σ (solid line). The raw moments of the corresponding Rayleigh distribution
Eq. 2.3 are shown as dashed line for comparison.

In Fig. 2.3 we compare the raw moments of the discrete distribution Eq. 2.9 using

Eqs. 2.11 and 2.12 to those of the Rayleigh distribution Eq. 2.3. The difference be-

tween the mean of the Rayleigh distribution and the mean of the discrete distribution

Eq. 2.9 approximately equals 0.5 for σ > 1, making it straightforward to estimate

the population mean from the sample mean. The difference between the raw mo-

ments obtained from the rounded distribution Eq. 2.10 and those of the Rayleigh

distribution Eq. 2.3 is much smaller thus not plotted.

Fig. 2.4 compares the expectation of the two estimators on rounded data, for

different σ. Note that the differences of the mean estimator Eq. 2.7 between the

Rayleigh distribution and the discrete distributions Eqs. 2.9 and 2.10 are approxi-

mately constants, for σ > 1. So, we can estimate the parameter σ by correcting the

sample means. But for the ML estimator Eq. 2.8, the correction is more difficult,

although the bias is much smaller.
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Figure 2.4: Difference between the true value and the noise parameters estimated by
the mean estimator and the ML estimator on rounded data.

Rician Noise Reduction

For recovering the underlying signal magnitudes, the method of MLE is preferred to

averaging the repetitions, especially for low SNR area.

Similar to the case of the Rayleigh distribution, the Rician distribution changes

to the following discrete distribution when the floating-point numbers are rounded

down:

f(m;A, σ) =

∫ m+1

m

f(x;A, σ) dx, (2.15)

and the following discrete distribution when rounding to the nearest integer is used:

f(m;A, σ) =

∫ m+1/2

max(m−1/2,0)

f(x;A, σ) dx. (2.16)

Evaluating those functions by subtracting two values of the CDF directly is not always

stable, because the CDF of the Rician distribution involves summation. Numerical

integration can be used when f(x;A, σ) is small.

When the MLE is used, the difference between the Rician distribution Eq. 2.1

and the discrete distribution Eq. 2.15 or Eq. 2.16 is significant when the underlying

signal A is small. Another advantage of Eqs. 2.15 and Eq. 2.16 is that we do not
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have to discard zero pixel intensity values when computing the joint density function

in MLE.

2.3 Methods

Noise Parameter Estimation

Estimating the parameter σ of a given MR images using the mean estimator Eq. 2.7

or the ML estimator Eq. 2.8 is done by computing the moment of the pixel values

obtained from a large region in the air background, which contains only noise (Gud-

bjartsson and Patz, 1995).

Simulation

Besides the analytical result shown in Fig. 2.4, we carry out simulations by generating

50000 Rayleigh distributed random numbers with predefined parameter σ = 5. The

floating-point numbers are then rounded to integers to simulate the quantization

process. The parameter is then estimated from the floating-point numbers and the

rounded integers, to compare the performance of the two estimators. The same

simulation is repeated 15 times. We use the method of analysis of variance (ANOVA)

to test if the parameter estimated from different method differs.

Phantom Experiments

We use the rat phantom constructed for a diffusion-weighted study (Campbell et al.,

2005) to test our method. The rat phantom was constructed by embedding rat spinal

cords in 2% agar. The cords were scanned one hour after they were surgically excised.

Totally 90 gradient directions are used to acquire the rat phantom data, and the

gradient directions are shown in Fig. 2.5(b). The unweighted image was produced by

averaging ten unweighted images and the original unweighted images were not saved.

Four co-registered datasets were acquired for b = 1300 s/mm2 and another four for
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b = 3000 s/mm2. The spinal cords are 5 mm in diameter. The image dimension is

128× 96× 40, and the voxel size is 2.5 mm× 2.5 mm× 2.5 mm. Water diffusion in

agar is isotropic while water diffusion within the spinal cords is anisotropic. Curved,

straight and crossing fiber tracts are all included in this phantom. T1-weighted image

of this phantom is shown in Fig. 2.6 to illustrate the configuration. The voxel size of

the T1-weighted image is 1 mm× 1 mm× 1 mm.

(a) truncated icosahedron (b) gradient directions of rat phantom

Figure 2.5: Gradient directions used in producing the human brain data and the rat
phantom data. (a) gradient directions derived from a truncated icosahedron with 60
vertices distributed on the unit sphere to acquire the human brain data; (b) gradient
directions used to acquire the rat phantom data with 90 vertices scattered on a half
hemisphere. The schema shown in (a) is also used in simulations.

Diffusion-weighted image of the rat phantom is shown in Fig. 2.7. In this chapter,

we only use the air background of the phantom. Pixels from two separate regions in

the air background are marked manually. The air background can be identified as the

black region in Fig. 2.7(a). For the images of b = 1300 s/mm2, the sizes of the two

regions are 9× 76× 19 and 17× 76× 19; for the images of b = 3000 s/mm2, the size

of the two regions are 18× 76× 19 and 21× 76× 19. As the rounding method used

in quantization is not known to us, the parameter σ̂ is estimated in both situations
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Figure 2.6: Selected slices of the T1-weighted image of the rat phantom showing the
phantom configuration. Two of the spinal cords are put together to create a fiber
crossing region.

by both the mean estimator Eq. 2.7 and the ML estimator Eq. 2.8.

(a) unweighted image (b) diffusion-weighted image

Figure 2.7: Unweighted and diffusion-weighted images of the rat phantom of b =
1300 s/mm2. Pixel intensities of the weighted image is much lower than that of the
unweighted image. The two images are shown as grayscale images using different
colormaps.

Human Brain Data

Four sets of diffusion-weighted images (referred as DIFF 30, DIFF 32, DIFF 33 and

DIFF 64) with different gradient schemes and T1-weighted (MP-RAGE) images of

one 43 years old healthy male adult are acquired using Siemens Sonata 1.5 T MRI

system in the same session, and at the same position. DIFF 30 consisted of one un-

weighted and 30 diffusion-weighted images; DIFF 32 consisted of three unweighted

and 30 diffusion-weighted images; DIFF 33 consisted of four unweighted and 30

diffusion-weighted images; DIFF 64 consisted of one unweighted and 64 diffusion-

weighted images. Different datasets can be combined to obtain datasets with more
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gradient directions. Diffusion-weighted images are acquired with the following pa-

rameters: slice thickness, 1.8 mm; 75 slices; field of view, 230.4 mm× 201.6 mm,

230.4 mm× 216 mm, 230.4 mm× 216 mm, and 230.4 mm× 201.6 mm; in-plane res-

olution, 1.8 mm× 1.8 mm; matrix, 128× 112, 128× 120, 128× 120, and 128× 112;

b = 800 s/mm2; TR and TE of the four sets are 9146 ms/86 ms, 9600 ms/90 ms,

9600 ms/90 ms, and 9146 ms/86 ms. T1-weighted image is acquired with the follow-

ing parameters: slice thickness, 1.0 mm; field of view, 256 mm× 256 mm; matrix

256× 256; 176 slices; TR 2250 ms, TE 3.03 ms.

Images of DIFF 32 and DIFF 33 together make a set of 60 diffusion-weighted

images with icosahedral scheme, named as DIFF 60. Images of DIFF 30 and DIFF 64

make a set of 94 diffusion-weighted images named DIFF 94. The icosahedral scheme

used by DIFF 60 is shown in Fig. 2.5(a).

A 17× 18× 68 region is manually selected from the air background of the DIFF 32

dataset. The same estimation and χ2 goodness-of-fit test as the phantom experiment

are carried out.

Noise Parameter Verification

It is reported that the Rayleigh distribution of the noise in the air background cannot

to be verified using the χ2 goodness-of-fit test (Gudbjartsson and Patz, 1995). One

of the debates in the discussions (Andersen, 1996; Gudbjartsson and Patz, 1996) on

the possible causes is whether quantization error is a reason of the failure.

As shown above, the quantization process changes the continuous distribution to

a discrete one. So, it is more reasonable to carry out the χ2 goodness-of-fit test using

the discrete PDF.

The null hypothesis of the χ2 goodness-of-fit test is that “the data is a random

sample from a Rayleigh distribution with the estimated parameter σ̂”. The test is

performed by first grouping the pixel intensity values into bins, each of which con-
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tains only one integer. Bins in the tails with a count less than a threshold are pooled

with neighboring bins to make sure that the count in each bin is large enough. The

frequency counted from each bin is then compared with the expected frequency com-

puted by Eq. 2.9 for rounding down and Eq. 2.10 for rounding to the nearest integer.

Suppose we get n bins at last, the test statistic is compared to a χ2 distribution with

n− 2 degrees of freedom, as we have one estimated parameter. The power of the test

for 55000 pixels is 0.95 if the effect size index w is 0.02.

Rician Noise Reduction

We estimate the underlying pixel intensity value using the MLE method with the

discrete distributions Eq. 2.15 or Eq. 2.16.

For simulation, Rician distributed random numbers are generated with predefined

A and σ. Assuming σ̂ = σ, Â is estimated from floating-point numbers using the PDF

of the Rayleigh distrituion Eq. 2.1, from rounded integers using Eqs. 2.15 and 2.10,

with four repetitions. The simulation is repeated 10000 times. We simply skip all

zero values and use the non-zero pixel intensity values to estimate Â, as zeros make

MLE using Eq. 2.1 not feasible.

We look into combinations of different rounding methods and different PDFs in

simulations. We compare the estimated values from rounded data using discrete

PDFs Eq. 2.15 or Eq. 2.16 to the values estimated using the Rician PDF Eq. 2.1 from

floating-point numbers without any rounding.

For the human brain data, there are seven repetitions for the unweighted image

and only one image for each gradient direction. When only one measured pixel

intensity is available, estimating the underlying signal magnitude by maximizing the

probability of the Rician distribution Eq. 2.1 or discrete distribution Eq. 2.15 or

Eq. 2.16 with fixed σ is a simple correction to the measured intensity. We plot the

estimated signal magnitude from one measured pixel intensity value for different noise
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levels in Fig. 2.8.
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Figure 2.8: Underlying signal magnitude estimated from one noisy pixel intensity
value, for different noise parameter σ and different noisy pixel intensity value.

2.4 Results

Noise Parameter Estimation

Simulation

No significant difference is found between the two estimators derived from Eq. 2.5

and Eq. 2.6. Multiple comparisons of the noise parameter estimation using the mean

estimator Eq. 2.7 and the ML estimator Eq. 2.8 are shown in Fig. 2.9. To compare

the mean estimator and the ML estimator on different rounding methods, 50000

floating-point Rayleigh distributed random numbers are generated. The floating-

point numbers are then rounded to integers using both rounding down and rounding to

the nearest integer methods. Simulations (a) and (b) use the floating-point numbers

as input, (c), (d), (g) and (h) use the integers which are rounded down from floating-

point numbers, and (e) and (f) use the integers obtained using rounding to the nearest

integer. Simulations (a), (c), (e), and (g) use the ML estimator, while (b), (d), (f)

and (h) use the mean estimator. Simulations (g) and (h) are the same as (c) and (d)
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except that 0.5 is added to each input integer. The same procedure is repeated 15

times to calcuate the mean and confidence interval of each simulation. The difference

between the two estimators is not significant except for integers that are rounded

down. Simply adding 0.5 to the intensity value of each pixel helps both estimators

get better results if rounding down is used.
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Figure 2.9: Multiple comparison result of the simulations of Rayleigh noise parameter
estimation. The mean and 95% confidence interval are plotted for each simulation.
Two means are considered different if their intervals are disjoint, and are considered
not significantly different if the intervals overlap. The comparison lines help compare
the interval of simulation (a) with that of other simulations. The input and estimator
used for each simulation: (a) floating-point and the ML estimator, (b) floating-point
and the mean estimator, (c) and (g) rounding down and the ML estimator, (d) and
(h) rounding down and the mean estimator, (e) rounding to the nearest integer and
the ML estimator, and (f) rounding to the nearest integer and the mean estimator.
In (g) and (h), a correction of 0.5 is added to each rounded pixel intensity values
before carrying out the computation.

Phantom Experiments

In Fig. 2.10, we plot the noise parameter σ estimated from all the 360 diffusion-

weighted images of the four repetitions. The noise parameter is estimated for both

rounding down and rounding to the nearest integer. The noise level estimated by

assuming rounding down as the rounding method is higher than that estimated by
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assuming rounding to the nearest integer. We carry out paired samples t-test and

the p-value is close to zeros, indicating the difference is significant.
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(b) b = 3000 s/mm2

Figure 2.10: Noise parameters estimated from all diffusion-weighted images of the
rat phantom. The dataset has four repetitions with each has 90 diffusion-weighted
images, for both b = 1300 s/mm2 and b = 3000 s/mm2. For each gradient direction,
noise parameters estimated from each repetition by assuming rounding down and
rounding to the nearest integer are plotted using different markers.

Box plots are shown in Fig. 2.11 to compare the noise parameter estimated from

the four repetitions when rounding down is assumed. The box plots are produced by

grouping the results in Fig. 2.10 by repetition. The plots show that the variation of

estimated noise parameter is small across different repetitions or different gradient

directions. The box plots of assuming rounding to the nearest integer are similar and

are not shown.

The PDF of the Rayleigh distribution with the parameter estimated from one

diffusion-weighted image is plotted for different b-values and different rounding meth-

ods in Fig. 2.12. The discrete PDF is evaluated by Eq. 2.9 for rounding down and

Eq. 2.10 for rounding to the nearest integer using the estimated noise parameter.

The value of the discrete PDF Eq. 2.9 for rounding down is different from that of the

Rayleigh PDF Eq. 2.3 with the same noise parameter. The histogram in Figs. 2.12(a)
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Figure 2.11: Noise parameters estimated from four repetitions of the rat phantom
shown as box plots for different b-values when rounding down is assumed. On each
box of the box plots, the central mark is the median of values, the edges of the box
are the 25th and 75th percentiles, the whiskers show the most extreme data points
not considered outliers, and outliers are plotted individually using “+”.

and 2.12(b) matches to the discrete PDF better when rounding down is assumed.

Human Brain Data

Noise parameter estimated from each image is plotted in Fig. 2.13. The value of

the noise parameter estimated assuming rounding down as the rounding method is

higher than that estimated assuming rounding to the nearest integer. Paired samples

t-test is carried out and the p-value is close to zero. The result of not considering

quantization error is identical to that of assuming rounding to the nearest integer.

The estimated noise parameter of the diffusion-weighted images is between 19 and

20, which is higher than that of the rat phantom, making the quantization error less

noticeable. The noise parameter estimated from the T1-weighted image is 5.6.

Histogram of the local SNR calculated from pixels within the brain is shown in

Fig. 2.15. The SNR of each pixel is calculated by Eq. 2.2 using the intensity value

of that pixel and the noise parameter estimated from the whole image. The brain is

extracted using Brain Extraction Tool (Battaglini et al., 2008). The local SNR of the
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(a) b = 1300 s/mm2, rounding down
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(b) b = 3000 s/mm2, rounding down
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(c) b = 1300 s/mm2, rounding to the nearest in-
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Figure 2.12: The PDF of the Rayleigh distribution with the noise parameter estimated
from one diffusion-weighted image of the rat phantom for different rounding methods
and different b-values together with the histograms of pixel intensity values. Both the
PDF of the Rayleigh distribution and the corresponding discrete PDF for different
rounding methods are plotted together for comparison.
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Figure 2.13: Noise parameter estimated from all the images of the human brain data,
for assuming both rounding methods. The first seven images are unweighted images
and the rest are diffusion-weighted images.
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(b) rounding to the nearest integer

Figure 2.14: The PDF with noise parameter estimated from one image of the human
brain data together with the histogram of pixel intensity values for different rounding
methods.
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T1-weighted image is between 20 and 40, which is higher than that of the diffusion-

weighted images, for more than 70% voxels within the brain. The local SNR of the

unweighted image is around 25 and that of the diffusion-weighted image is below 20.
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Figure 2.15: The SNR of diffusion-weighted images and T1-weighted image of human
brain data. The histograms of SNR of one unweighted image and that of one weighted
image are plotted together in (a) for comparison.

Model Verification

Phantom Experiment

Although the rounding method is not provided with the images, rounding down is

more likely than rounding to the nearest integer to have been used in producing the

data. We carry out χ2 goodness-of-fit test of the noise parameters estimated for

both rounding methods. If rounding to the nearest integer has been used, the null

hypnosis is rejected for all 360 diffusion-weighted images of both b = 1300 s/mm2 and

b = 3000 s/mm2, at significant level α = 0.05/360. When rounding down is assumed,

the null hypnosis is not rejected for any image at the same significant level. Therefore

we conclude that rounding down has been used to store the raw images. It can also
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be seen from Fig. 2.12 that the estimated noise parameters fit the frequencies better

for rounding down.

Human Brain Data

We carry out the same procedures for the human brain data. However, there is not

much difference between rounding down and rounding to the nearest integer, because

the noise level of the human brain data is high and truncation does not introduce large

error compared to the noise. When assuming rounding down as rounding method, χ2

goodness-of-fit test is rejected for 2 out of 67 images at significant level α = 0.05/67,

while the same test is rejected for 10 images when rounding to the nearest integer is

assumed. Although we are not able to judge the rounding method used in producing

the data, the noise distribution is verified for majority of the images.

Rician Noise Reduction

Simulations show that the standard deviation of the MLE decreases when the number

of repetition increases, or the SNR increases.

The result of using Eq. 2.1 to conduct the MLE with rounding down data is

significantly different from that of other estimators, when the number of repetitions

is large enough.

Although there is no statistical difference between those estimators when the

number of repetitions is small, the result of using Eq. 2.1 is always 0.5 lower than

that of other estimators.

Table 2.1 lists simulation results of the noise reduction using MLE, for A =

12, 18, and 60.

The underlying pixel intensity value estimated from human brain data is shown

in Fig. 2.16. For the unweighted image, the pixel intensity values are estimated from

seven repetitions, while for the diffusion-weighted image, the pixel intensity values
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Data type or rounding method PDF A = 12 A = 18 A = 60

floating-point Eq. 2.1 11.8± 3.5 18.0± 3.1 60.0± 3.0
rounding down Eq. 2.1 11.2± 3.6 17.5± 3.1 59.5± 3.0
rounding down Eq. 2.15 11.8± 3.5 18.0± 3.1 60.0± 3.0
rounding to the nearest integer Eq. 2.1 11.8± 3.5 18.0± 3.1 60.0± 3.0
rounding to the nearest integer Eq. 2.16 11.8± 3.5 18.0± 3.1 60.0± 3.0

Table 2.1: Simulation result of noise reduction using MLE with the PDF of the Rician
distribution Eq. 2.1 and discrete PDF Eq. 2.15 or Eq. 2.16.

are estimated from one image. Fig. 2.16(a) shows that the variation of pixel intensity

values of the same pixel from different repetitions may be large. In our experiment,

the underlying pixel intensity value estimated using MLE is actually close to the

sample mean. For the diffusion-weighted image, as we do not have repetitions, the

estimated underlying value is just a small correction to the measured value.
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Figure 2.16: Pixel intensity values and estimated signal intensity value of the human
brain data. The estimated signal intensities as well as the 95% confidence intervals
are shown using error bars. For the unweighted image, the signal intensity values are
estimated from seven repetitions. While for the diffusion-weighted image, the signal
intensity values are estimated from one measured intensity value.
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2.5 Discussion

We propose a simple correction of adding 0.5 to pixel intensity values if rounding down

is used to save the data. Both of the two estimators Eq. 2.7 and Eq. 2.8 are derived

without taking the quantization error into account. Although the ML estimator

Eq. 2.8 is preferred in some studies, the results from both methods are similar in our

simulation if the correction is carried out. However, using integers rounded down from

floating-point number as if they are floating-point numbers introduces a bias in the

result if the noise level is low. Although the difference is only 5% in the rat phantom,

it causes the goodness-of-fit test to fail if another rounding method is assumed. When

noise level is high, the effect of quantization error is less noticeable.

Noise parameter estimation and noise reduction should be integrated into the DWI

processing pipeline. In order to employ the Rician noise reduction, it is better not to

average multiple acquisitions by the scanner. The noise parameter may be estimated

from a single acquisition before or after the eddy current correction process, by se-

lecting a large region in the air background manually. Rician noise reduction is then

carried out after registering multiple acquisitions. In both eddy current correction

and registration, we recommend to use the nearest-neighbor interpolation because it

does not change the noise distribution.

The MLE approach of Rician noise reduction does not provide much improvement

when b-value is large, especially when the number of acquisitions is small. The

limitation is due to the fact that the diffusion-weighted signals are much weaker with

high b-values. The quantization error can sometimes be ignored here because the

Rician noise is the major concern. In Ch. 4 we avoid doing noise reduction on each

single diffusion-weighted signal by carrying out MLE on the diffusion model.

The noise level is often simply reported as an averaged SNR. This practice may

be sufficient for structural MRI, but it is not appropriate for diffusion MRI. It is

because the local SNR can differ a lot from location to location or image to image.
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The noise level σ can be considered fixed for the whole image, while the ADC may

differ greatly (Kristoffersen, 2007). Therefore, it is preferred to report the parameter

σ in DWI studies, because the local SNR is not a constant.

Copyright c© Ning Cao, 2013.
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Chapter 3 Apparent Diffusion Coefficient Estimation

Diffusion tensor model is insufficient for complex tissue structures within a single

voxel. Although complex diffusion models (Alexander et al., 2001; Tuch et al., 2002;

Parker and Alexander, 2003) are proposed, none of them is able to fully capture the

complex details of local diffusion. Therefore, we look into methods that describe the

ADC profile without a model.

When the diffusion tensor model is sufficient to describe a diffusion profile, we

are able to use the diffusion tensor to fully assess the diffusion profile. It means that

in addition to the measured values for each gradient direction, we have a continu-

ous function defined on the unit sphere to describe the diffusion profile. In HARDI,

diffusion-weighted signal is recorded for many more gradient directions than in a typ-

ical DTI study. We need a continuous function to describe the shape of the diffusion

profile when the diffusion tensor model is not sufficient. HODT and spherical har-

monic series are proposed to describe the shape of local diffusion profiles (Frank, 2002;

Alexander et al., 2002; Özarslan and Mareci, 2003; Chen et al., 2004; Özarslan et al.,

2005; Descoteaux et al., 2006) without assigning a particular diffusion model. In the

studies using spherical harmonic series, LS minimization is often used to obtain the

coefficients of spherical harmonic series. We show that LS method is not always stable

and provide alternative methods to calculate the coefficients of spherical harmonic

series.

3.1 Introduction

Any square-integrable function f(θ, φ) defined on the unit sphere can be expanded

using spherical harmonics (Byerly, 1895; MacRobert and Sneddon, 1967), as:

f(θ, φ) =
∞∑
`=0

∑̀
m=−`

cm` Y
m
` (θ, φ), (3.1)
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where Y m
` is the spherical harmonic function of degree ` and order m. It is a standard

method in physical sciences and computer graphics. The notational convention of θ

and φ is defined in Eq. 1.1. It follows the one commonly used in physics and some

HARDI studies (Frank, 2002; Özarslan and Mareci, 2003; Chen et al., 2005). The

expansion coefficient cm` of degree ` and order m is given by the following integral:

cm` =

∫
Ω

dΩf(θ, φ)Y m
`
∗(θ, φ)

=

∫ 2π

0

dφ

∫ π

0

dθ sin θf(θ, φ)Y m
`
∗(θ, φ), (3.2)

where Y m
`
∗(θ, φ) denotes complex conjugation of Y m

` (θ, φ), and the process of obtain-

ing cm` is known as spherical harmonic transform (SHT). In addition to the spherical

harmonics, the real form of spherical harmonics can be used to simplify the compu-

tation.

In diffusion-weighted MRI studies, ADC profile d(~g) defined in Eq. 1.5 is the

underlying diffusion profile of water molecules within a voxel. It is often convenient

to write d(~g) in spherical coordination as d(θ, φ). Studies regarding the ADC profiles

approximate d(θ, φ) using spherical harmonic series truncated to a certain degree

L (Alexander et al., 2002; Frank, 2002; Chen et al., 2004, 2005) as:

d(θ, φ) =
L∑
`=0

∑̀
m=−`

cm` Y
m
` (θ, φ). (3.3)

Odd-degrees of the expansion coefficients cm` can be omitted because the diffusion-

weighted signal is antipodally symmetric (Frank, 2002; Alexander et al., 2002). Choos-

ing L = 2 in Eq. 3.3 equals the diffusion tensor model (Frank, 2002; Özarslan and

Mareci, 2003; Descoteaux et al., 2006), and a higher degree of L allows more details

of the ADC profile to be captured.

The commonly used approach treats the problem as curve fitting. The straight-

forward LS minimization is used in some studies (Alexander et al., 2002). The coef-

ficients cm` in Eq. 3.3 can be obtained by solving the linear system

Mc = d (3.4)
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using linear LS method, where M is the matrix containing all even order spherical

harmonic basis for all the n sampling directions as

M =


Y 0

0(θ1, φ1) Y −2
2 (θ1, φ1) · · · Y L

L(θ1, φ1)

...
...

. . .
...

Y 0
0(θn, φn) Y −2

2 (θn, φn) · · · Y L
L(θn, φn)

 , (3.5)

c = [c0
0, . . . , c

L
L]T is the vector of unknown coefficients to be decided, and d =

[d(θ1, φ1), . . . , d(θn, φn)]T is the vector of the ADC values at each sampling direction.

3.2 Methods

The sampling schemas used in HARDI studies are either obtained from the regu-

lar polyhedrons (Tuch et al., 1999; Frank, 2001, 2002; Tuch et al., 2002; Özarslan

and Mareci, 2003; Özarslan et al., 2005; Descoteaux et al., 2006) or from numerical

optimizations (Papadakis et al., 2000; Hasan et al., 2001; Jansons and Alexander,

2003).

When considering the problem as sampling, we follow the notations of mathe-

matic references to use the word “node” to refer to each sampling direction, and use

“sampling grid” for the point grid on the unit sphere formed by all the sampling

directions of a sampling schema. The coefficients can be obtained by evaluating the

integrals Eq. 3.2 using samples fi = f(θi, φi).

Let qm` (θ, φ) denote the integrand in Eq. 3.2:

qm` (θ, φ) = f(θ, φ)Y m
`
∗(θ, φ). (3.6)

As the integral Eq. 3.2 is needed for all ` and m, we simply write qm` (θ, φ) as q(θ, φ).

To get cm` , we need to compute the integral Eq. 3.2 using samples qi = q(θi, φi). We

use I[q] to denote such formulas.
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Computation of SHT

As a continuous function q̃ can be obtained from the samples qi by interpolation,

the integral Eq. 3.2 can be approximated by numerically integrating the interpolated

function. This approach is not adopted here because it introduces artificial values

that are not from the input data.

Previous studies (Wang and Carrington, 2003; Stevensson and Edén, 2006) using

Lebedev quadrature (Lebedev, 1976) and Gaussian quadrature show that Eq. 3.2 can

be exactly evaluated by the following format with some restrictions (Lebedev, 1977;

Koch and Becker, 2004):

Ĩ[q] =
n∑
i=1

wiqi, (3.7)

where wi are weights to be decided. In these methods, the function qi is known and

the sampling grid is carefully chosen to find formulae that are accurate to a degree

as high as possible with as few nodes as possible. In our case, only the samples qi are

available.

Although a higher degree of L in Eq. 3.3 may be demanded for better approx-

imation, we show that the value L that can be chosen is limited by the sampling

schema.

Least Squares Minimization

Let Y m
` denote Y m

` (θi, φi) and the n sampling points satisfy the orthogonality rela-

tionships Eq. 3.12. To find the best fit in the LS sense of fi, we minimize

J =
n∑
i=1

[(fi −
L∑
`=0

∑̀
m=−`

cm` Y
m
` )(fi −

L∑
`=0

∑̀
m=−`

cm` Y
m
` )∗]. (3.8)

By setting the partial derivatives of J to zero,

∂J

∂cm`
=

n∑
i=1

[(fi −
L∑
`=0

∑̀
m=−`

cm` Y
m
` )(−Y m∗

` ) + (fi −
L∑
`=0

∑̀
m=−`

cm` Y
m
` )∗(−Y m

` )] ≡ 0 (3.9)
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and utilizing the orthogonality relationships Eq. 3.12, we have

cm` + cm∗` =
1

n

n∑
i=1

fi(Y
m
` + Y m∗

` ). (3.10)

So a formula in the format of

cm` =
1

n

n∑
i=1

fiY
m
` (3.11)

is also the LS solution.

Therefore, the LS minimization is exactly the same as the quadrature formulae,

like Eqs. 3.14, 3.15, and 3.16, if the set of basis used is orthogonal on the sampling

grid, e.g.,
n∑
i=1

Y m
` (θ, φ)Y m′∗

`′ (θ, φ) = δ``′δmm′ . (3.12)

The LS method by solving Eq. 3.4 only works for some combinations of degree

and sampling schema. For other combinations, there is a rank deficiency issue. Rank

and condition numbers of the normal matrix MTM for choosing L = 2, 4, 6, and 8

in Eq. 3.3 for the sampling grids mentioned above are listed in Table 3.1. Note that

full rank of MTM for L = 2, 4, 6, and 8 are 6, 15, 28, and 45. Therefore, we need

alternative approaches to calculate the coefficients.

Table 3.1: Rank and condition number of MTM

Schema (n)
Rank Condition number

L=2 4 6 8 L=2 4 6 8

icosahedron (20) 6 6 6 6 1 9.9× 1016 2.8× 1018 1.5× 1018

2nd tessellation (42) 6 15 22 22 20 1.4× 103 8.4× 1017 6.0× 1017

3rd tessellation (92) 6 15 28 45 17 490 4.28× 105 1.7× 107

4th tessellation (162) 6 15 28 45 16 520 2.5× 105 2.4× 106

5th tessellation (252) 6 15 28 45 16 466 2.1× 105 1.3× 106

truncated icosahedron (60) 6 15 27 30 1 1.2 1.8× 1016 1.0× 1017

Elec061 (61) 6 15 28 45 1 1.0 1.1 1.2
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Directions from the Icosahedron

Sampling grids obtained from the regular icosahedron are often used in HARDI stud-

ies (Tuch et al., 1999; Frank, 2001, 2002; Tuch et al., 2002; Özarslan and Mareci,

2003; Özarslan et al., 2005; Descoteaux et al., 2006). The regular icosahedron has

12 vertices, 20 faces and 30 edges. One or more groups of the vertices (denoted as

av), the midpoints of each edge (denoted as ae) and the centers of each face (de-

noted as af ) can be used as gradient directions. Elements of each of the above set

are equivalent under icosahedronal symmetry, so their corresponding weights are the

same. Tessellations of the regular icosahedron (Tuch et al., 1999; Frank, 2001) gener-

ate more nodes thus increase the angular resolution. See Fig. 3.1 for the tessellation

process and the nodes av, ae, and af .

The quadrature formula is in the format of

Ĩ[q] = wv
12∑
i=1

q(avi ) + we
30∑
i=1

q(aei ) + wf
20∑
i=1

q(afi ) + . . . , (3.13)

where wv, we, wf , . . . are constants to be decided. The method of deciding the con-

stants wv, we, wf , . . . have been studied elsewhere (McLaren, 1963) and the constants

are tabulated (Stroud, 1971).

For example, the quadrature of the 12 vertices (McLaren, 1963; Stroud, 1971;

Bažant and Oh, 1986) is

Ĩ12[q] =
π

3

12∑
i=1

q(avi ). (3.14)

The alternative one is that of the 20 centers of each faces (McLaren, 1963; Bažant

and Oh, 1986)

Ĩ20[q] =
π

5

20∑
i=1

q(afi ), (3.15)

and that of the 30 midpoints of each edge (McLaren, 1963)

Ĩ30[q] =
2π

15

30∑
i=1

q(aei ). (3.16)
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Figure 3.1: The second order and the third order tessellations of a regular icosahedron.
(a) and (b) are the tessellation of a face; (c) and (d) are the tessellated regular
icosahedrons.

They are accurate to the degree of 5 (McLaren, 1963). Using the 60 vertices (denoted

as at, see Fig. 3.1(d)) of the truncated icosahedron also yields a quadrature accurate

to degree of 5:

Ĩ60[q] =
π

15

60∑
i=1

q(ati). (3.17)

The quadrature for the second order tessellation of a regular icosahedron, which

is shown in Fig. 3.1(c), is the 9th order with 42 points, with 12 points of avi and 30

points of aei (McLaren, 1963; Bažant and Oh, 1986):

Ĩ42[q] =
25π

315

12∑
i=1

q(avi ) +
32π

315

30∑
i=1

q(aei ). (3.18)

We obtain the quadrature for the third order tessellation of a regular icosahedron
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(see Fig. 3.1(d)) numerically. It is a combination of avi , a
f
i and the 60 vertices of the

truncated icosahedron:

Ĩ92[q] = wv
12∑
i=1

q(avi ) + wf
20∑
i=1

q(afi ) + wt
60∑
i=1

q(ati), (3.19)

with wv = 0.08480585664765, wf = 0.15198893252538 and wt = 0.14181536140133.

It is accurate to the degree of 11 (Sobolev, 1962).

Finite Element Integration

In general, formulas like Eqs. 3.18 and 3.19 do not exist for the directions obtained

from numerical optimizations.

When the number of nodes is small, the sampling grid provides triangulation of the

sphere surface. The tessellation process provides a triangular grid of the icosahedron;

for sampling grids obtained from numerical optimization, we may use the Delaunay

triangulation of the vertices. With more points added to the sampling grid, the

triangular grids become good approximations of the sphere surface, so that a slightly

revised centroid rule can be used.

Let Tk1 , . . . , Tkm be the m triangles that share the vertex vk, Ak1 , . . . , Akm be their

area, and A′k1 , . . . , A
′
km

be the area of their projections on the sphere surface, the

quadrature can be approximated (Atkinson, 1982) as

Ĩ[q] =
1

3

n∑
k=1

[q(vk)
m∑
j=1

A′kj ], (3.20)

or

Ĩ[q] =
1

3

n∑
k=1

[q(vk)
m∑
j=1

Akj ]. (3.21)

The degree of precision of the centroid rule on the tessellations of a regular icosa-

hedron is 5 (Atkinson, 1982). The error of using it on the tessellations of a regular

icosahedron can be found by integrating Y m
` , ` = 1, . . . , 5. The maximum absolute

error of Ic(Y
m
5 ), m = −5, . . . , 5 is shown in Table 3.2.
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Table 3.2: The absolute error of Ic(Y
m
5 )

sampling schema n error of Ic(Y 5m)
icosahedron 12 2.66× 10−15

2nd tessellation 42 9.71× 10−16

3rd tessellation 92 4.16× 10−16

4th tessellation 162 3.97× 10−16

5th tessellation 252 2.75× 10−16

Applying Eq. 3.20 to the 12 vertices or the 20 face centers of the regular icosahe-

dron yields the same formula as Eqs. 3.14 and 3.15.

Monte Carlo Integration

If the nodes are fairly distributed on the sphere, it is possible to use the Monte Carlo

integration (Caflisch, 1998) on the unit sphere to calculate the integral of Eq. 3.2

with discrete samples:

ĨMC [q] =
4π

n

n∑
i=1

qi. (3.22)

The weights of Monte Carlo integration Eq. 3.22 are exactly the same as the

quadrature Eqs. 3.14, 3.15 and 3.16. And, the weights of Eq. 3.20 on the Elec061

schema and the 5th order tessellation of the regular icosahedron are from 0.08446 to

0.1058, and 0.0314 to 0.0562.

Complexity

The complexity of both the quadratures in this section and LS minimization is O(n).

In Eq. 3.7, both the weights wi and the samples Y m
` (θi, φi) are decided by the sampling

schema, thus are computed only once for the whole image volume. For Eq. 3.4, the

matrix (MTM)−1MT can be computed in advance, if the normal matrix MTM has

full rank. The ADC values D̃i are obtained directly from the diffusion-weighted

measurement. So, computing a single cm` using Eq. 3.7 or Eq. 3.4 is the same as

45



www.manaraa.com

computing the inner product of two vectors, requiring n multiplications and n − 1

additions.

Choosing L for Gaussian Mixture model

Spherical harmonics truncated to a certain degree L are used to describe the ADC

profiles of the biGaussian model (Alexander et al., 2002; Frank, 2002; Chen et al.,

2005; Cao et al., 2009). However, the degree L is decided arbitrarily or by the model

residual only. We carry out simulations to compare the relative error in ADC profiles

caused by truncating spherical harmonics with that caused by Rician noise to choose

the degree L so that the truncation error is similar to the error caused by Rician

noise.

Two tensor compartments with eigenvalues being (1200, 200, 200)× 10−6 mm2 /s

are used to generate the biGaussian ADC profiles. In the simulations, the angle τ

between the two tensor compartments covers the range of 0◦ to 90◦ because it is

reported that the choice of L depends on the relative orientation of the two tensor

compartments (Frank, 2002). The same simulation is repeated for different σ and

different b-values. To ensure accuracy, we use the 5810-node Lebedev grid, which is

accurate to the degree of 131, to compute the integrals needed by SHT.

3.3 Results

Simulation

The relative error in biGaussian ADC profiles caused by Rician noise are plotted

in Figs. 3.2(a) and 3.2(b) for different noise level σ. The relative error caused by

both the noise and truncating the spherical harmonics to L are shown in Figs. 3.2(c)

and 3.2(d). The SHT is computed using the Lebedev grid and the error is checked on

the directions obtained from the 4th tessellation of the icosahedron. The Rician noise

is decided by σ only, therefore the absolute ADC error caused by Rician noise does
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not depend on gradient direction, b-value, and τ . The difference of the relative error

for different τ is mainly because the biGaussian ADC values depend on τ . The error

caused by truncating the spherical harmonics to L, or the model residual, depends

greatly on the angle τ . Although it is reported that higher L is required when the two

tensor orientations are more closely aligned (Frank, 2002), the peak of ADC error is

observed when τ is around 45◦ in Figs. 3.2(c) and 3.2(d) for L ≥ 2 in our simulations.

It also indicates that the power spectrum of ADC profiles of the biGaussian model is

not generally limited to a small number, however, a small L can be used when τ is

towards 0◦ or 90◦. Therefore, the choice of L depends on the application and other

imaging parameters. However, for the biGaussian model and relative low noise level,

a large L is not necessary.

It can also be seen from Figs. 3.2(c) and 3.2(d) that using L = 2 to truncate

Eq. 3.3, which equals the diffusion tensor model, maintains a moderate low relative

ADC error when τ is around 0◦ or 90◦. This phenomena indicates that the diffusion

tensor model is a good approximation of the biGaussian model in these situations.

When τ is small, it is difficult to distinguish the two-fiber case from the single-fiber

case, making it not feasible to reconstruct the curving fibers using biGaussian model.

When τ is towards 90◦, a tensor with λ1 ≈ λ2 > λ3 approximates the biGaussian ADC

profile well. Therefore, planer-shaped diffusion tensors should be checked carefully in

diffusion tensor model.

Human Brain Data

The same human brain data mentioned in Ch. 2 is used to test the quadrature formu-

lae. The spherical harmonics coefficients for ` = 0, 1, and 2 of the human brain data

are shown in Fig. 3.3. The air background area is kept in the figures to show the effect

of pure noise. The coefficients are computed using the 60 point quadrature formula

Eq. 3.17. The coefficients of ` = 1 are mainly caused by imaging artifacts and Rician
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(a) σ = 10, noise only
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(b) σ = 25, noise only
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(c) σ = 10, truncated spherical harmonics
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(d) σ = 25, truncated spherical harmonics

Figure 3.2: The relative error in ADC profiles when the spherical harmonics are
truncated to different degrees to describe the biGaussian ADC profiles with different
angle τ between the two tensor compartments. The errors on each gradient direction
are used to create the boxes in the box plots. On each box of the box plots, the
central mark is the median of values, the edges of the box are the 25th and 75th
percentiles, the whiskers show the most extreme data points not considered outliers,
and outliers are plotted individually using “+”. (a) and (b) show the error in ADC
profiles caused by Rician noise; (c) and (d) show the error in ADC profile caused by
both noise and truncating the spherical harmonics to degree L. The figures shown
here are for b = 1000 s/mm2 and S0 = 500.
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noise, which appear in all degrees. The model residual for truncating the spherical

harmonics to L = 0, 2, and 4 is shown Fig. 3.4. Truncating the spherical harmonics

to L = 0 equals the isotropic model, and truncating to L = 2 is the same as the

diffusion tensor model. Some major fiber bundles can be seen in Fig. 3.4(a) because

the isotropic model is not able to describe anisotropic diffusion. From Figs. 3.4(b)

and 3.4(c), we can see that the error in ADC profiles for different brain structure is

different, indicating different L can be chosen for different applications.

(a) ` = 0

(b) ` = 1

(c) ` = 2

Figure 3.3: The magnitude of the spherical harmonic expansion coefficients of an axial
slice of the human brain data for ` = 0, 1, and 2, and m = −`, . . . , `. The ranges of
the coefficients of different ` are different, and the colormap for images of each ` is
adjusted to get proper contract. (b) and (c) are made 5 and 10 times brighter so that
the brightness is similar to that of (a).

3.4 Discussion

The development of Fourier series is an important tool in rectangular domains. The

spherical harmonics represent functions on a sphere in the same way as Fourier se-
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(a) L = 0 (b) L = 2 (c) L = 4

Figure 3.4: An axial slice of the root mean square error of the ADC profile re-
constructed from spherical harmonics truncated to different L of the human brain
data.

ries do in rectangular domains. Many methods in Fourier analysis can be used in

spherical harmonic analysis by taking expansions in spherical harmonics rather than

trigonometric functions. Therefore, it worth to investigate fast computing algorithms

analogous to the discrete Fourier transform.

Gradient schemas from icosahedron tessellations or truncated icosahedron are of-

ten used in HARDI studies to acquire the data. We propose to use the quadrature

formulas developed in numerical integration on spheres to carry out SHT for these

schemas. We also show that some other methods are exactly the same as the quadra-

ture formulas on these schemas. LS minimization is used in some HARDI studies. It is

shown in this chapter that the method of inverting the matrix MTM in LS minimiza-

tion should be avoided on these schemas, because the matrix MTM is ill-conditioned

when L > 4. The gradient schema in HARDI studies should be chosen carefully to

maintain numerical stability in calculating spherical harmonic coefficients.

Using spherical harmonics truncated to a degree L to present the non-Gaussian

ADC profiles is a popular approach in HARDI studies. However, recovering Gaussian

mixture models is not always supported by the relatively low b-values and relatively

low angular resolution in some studies. This is one of the reasons why recovering

Gaussian mixture models with more than two tensor compartments is reported not
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numerically stable (Tuch et al., 2002; Kreher et al., 2005).

Attention should also be paid to some simply model selection approaches. It is

expected that it is difficult to recover Gaussian mixture models with closely aligned

tensor compartments. A less intuitive fact is that when tensor compartments are

perpendicular to each other, the diffusion tensor model may also fit the ADC profile

well.

Copyright c© Ning Cao, 2013.
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Chapter 4 Fitting Diffusion Models to Data

In Ch. 3, we look for spherical functions that describe the shape of ADC profile using

diffusion-weighted signals measured at different gradient directions. In this chapter,

we describe how we fit different diffusion models to data. By fitting a diffusion model

to data, useful information, for example, local anisotropy, local fiber orientation, can

be derived from the model. We focus on finding the value of parameter vector p

that “best fits” a given diffusion model M(p). Sometimes it is not straightforward

to choose one diffusion model over the other. We discuss how we choose a suitable

diffusion model from two candidate models or a set of candidate models based on the

result of this chapter in Ch. 5.

4.1 Introduction

For a given parametric model M(p) with parameter vector p, we may either take

the descriptive approach which looks for a parameter vector p so that the difference

between the measured data and the values predicted by the model M is minimized,

or look for the parameter that “most likely” to produce the data, with or without a

prior distribution. When discussing in the context of diffusion models, M can be any

diffusion model, for example, diffusion tensor model and biGaussian model. These

techniques calculate a point estimate.

The descriptive approach of fitting a diffusion model often looks for parameter

vector p that minimizes the mean squared error between the diffusion-weighted signal

predicted by the model and the measured diffusion-weighted signal Si:

p = arg min
p∈P

1

n

n∑
i=1

(M(p|~gi, b, S0)− Si)2, (4.1)

where M(p|~gi, b, S0) is the diffusion-weighted signal predicted by model M with p

being the variable of M. Note that the widely used linear LS method (Basser et al.,
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1994a) in solving Eq. 1.6 minimizes mean squared error of ADC, instead of diffusion-

weighted signal:

p = arg min
p∈P

1

n

n∑
i=1

(log M(p|~gi, b, S0)− logSi)
2. (4.2)

Linear LS is identical to assuming the distribution of the error terms to belong to

a normal distribution with mean zero. Besides linear LS, weighted linear LS, and

nonlinear fits are also presented in previous studies (Kingsley, 2006b).

The MLE method maximizes the likelihood function without using any prior dis-

tribution, while a maximum a posteriori probability (MAP) estimation (Behrens

et al., 2003; Friman et al., 2006) uses the prior distribution of the parameter be-

ing estimated. The major argument of the MAP estimation is that the optimization

objective incorporates a prior distribution of the parameters being estimated. Land-

man et al. use the MLE approach to fit the diffusion tensor model (Landman et al.,

2007), but they do not use the confidence interval to indicate the reliability of the

estimate. Behrens et al. present a probabilistic framework based on the MAP esti-

mation and report the marginal posterior distributions of the parameters regarding

the fiber orientations to illustrate how well the fit is (Behrens et al., 2003). However,

there was no practical guideline for deciding the prior distributions. Therefore, the

prior distributions are somehow decided arbitrarily.

In addition to diffusion tensor model, we use the MLE approach on biGaussian

models with different number of parameters. We also compute the covariance matrix

of the parameters to get a confidence interval and for model selection.

4.2 Method

For a given voxel, suppose we have diffusion-weighted signals measured on n different

gradient directions with r acquisitions on each gradient direction. It is straightfor-

ward to treat the r measurements on each gradient direction as samples of a Rician
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distribution, and the parameters ν and σ of the Rician distribution can be estimated

together using the r repetitions. It is also possible to estimate σ of the Rayleigh

distribution for the whole image using Eq. 2.3 first, so that ν can be estimated with

σ being fixed (Sijbers et al., 1998a; Kristoffersen, 2007). However, this approach does

not always work properly if r is small, especially when b-value is large and SNR is

low. Instead, we consider the r repetitions as r samples of the diffusion model, and

each sample has n measurements on different gradient directions.

Local Diffusion Models

In order to evaluate the MLE method, we choose the following parametric models:

1. The plain diffusion model, or the isotropic model, defined in Eq. 1.2. It only

has one parameter, the diffusion constant D.

2. The diffusion tensor model defined in Eq. 1.6. It has three parameters for the

shape and another three parameters for rotations. The parameter vector is

pdt = (λ1, λ2, λ3, ϕ, ϑ, ψ). (4.3)

3. The biGaussian model defined in Eq. 1.19. If the two tensor compartments are

not related, there are totally 13 parameters, with six for each tensor compart-

ment and one for volume ratio f. If the shapes of the two tensor compartments

are exactly the same, the number of parameters reduces to 10. The parameter

vector of the biGaussian model with 13 parameters is

pbg13 = (λ
(1)
1 , λ

(1)
2 , λ

(1)
3 , ϕ(1), ϑ(1), ψ(1), λ

(2)
1 , λ

(2)
2 , λ

(2)
3 , ϕ(2), ϑ(2), ψ(2), f), (4.4)

and the parameter vector of the model with 10 parameters is

pbg10 = (λ1, λ2, λ3, ϕ
(1), ϑ(1), ψ(1), ϕ(2), ϑ(2), ψ(2), f). (4.5)
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It is possible to further restrict or even fix the anisotropy of tensor compart-

ments (Tuch et al., 2002) to reduce the number of parameters to make numerical opti-

mization more stable. Also, some simplified diffusion models (Frank, 2001; Alexander

et al., 2001) make numerical optimization much easier.

We want to try other complex diffusion models as well, for example, the general

Gaussian mixture model. However, the numerical optimization is slow and is not

stable. It is also reported in other studies that Gaussian mixture model with K = 3

is unstable (Tuch et al., 2002; Kreher et al., 2005).

Maximum Likelihood Estimation

We regard the diffusion-weighted signals Si measured at a gradient direction ~gi as

observations of the Rician distribution with PDF f(x|Ai, σi), where Ai is the diffusion-

weighted signal predicted by the diffusion model M(p) at gradient direction ~gi, and

the scale parameter σi of diffusion-weighted image Si can be estimated using the

mean estimator of the Rayleigh distribution Eq. 2.7.

We look for the parameter p ∈ P, where P is the allowable set of parameter p,

that “best fits” the diffusion model M for a given voxel, by maximizing the joint PDF

f(S1, . . . , Sn|p) =
n∏
i=1

f(Si|Ai, σi) (4.6)

of these n individual Rician distributions. The joint PDF Eq. 4.6 is an extension of

the one we used in Ch. 2, allowing PDFs with different parameters in the joint PDF.

When there are r repetitions for each gradient direction, the term of f(Si|Ai, σi) is

replaced by
∏r

j=1 f(S
(j)
i |Ai, σi), where S

(j)
i represents the j-th repetition. Although

the unweighted signal S0 can also be modeled using Rician distribution, we treat it

as a parameter of the diffusion model to simplify the computation. We use the value

recovered from the Rician distribution as S0, in order to simplify the calculation

of the likelihood function. We do so without much concern because the SNR of
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the unweighted signal is always much higher, and it is often acquired with multiple

repetitions. The likelihood function L is therefore defined as

L(p|S1, . . . , Sn) =
n∏
i=1

f(Si|M(p|~gi, b, S0), σi), (4.7)

and we find the value of p that maximizes the natural logarithm of the likelihood

function, which is called the log-likelihood function,

logL(p|S1, . . . , Sn) =
n∑
i=1

log f(Si|M(p|~gi, b, S0), σi), (4.8)

that is

p̂mle = arg max
p∈P

logL(p|S1, . . . , Sn). (4.9)

The logarithm function is monotonically increasing, thus it achieves the maximum

value at the same point as the original function. And, the logarithm makes calculating

the gradient of the log-likelihood function Eq. 4.8 simpler. The derivative of the

logarithm of the Rician PDF log f(x) is

(log(f(x)))′ =
ν

σ2
− x

σ2
·
I1(νx

σ2 )

I0(νx
σ2 )

, (4.10)

where I1(x) is modified Bessel function of the first kind of order one. The gradient

functions of diffusion model M can then be used together with the derivative of the

logarithm of the PDF Eq. 4.10 by applying the chain rule to compute the gradient of

log-likelihood function Eq. 4.8.

For the isotropic model and the diffusion tensor model, we use the solution ob-

tained from Eq. 1.2 and tensor diagonalization Eq. 1.8 as the starting point. For other

models, we use multiple restarts with starting points chosen from the whole allowable

parameter set P randomly because there is no easy way to find good starting points.

We do not use feedbacks from fiber tracking algorithm in generating starting points.

The confidence interval of pmle is calculated by assuming that pmle is normally

distributed. The asymptotic covariance of ML estimator at pmle is approximated by

finite difference. The confidence interval is then decided by the CDF of the normal

distribution with corresponding standard deviation.
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Optimization

The optimization problem Eq. 4.9 is generally solved by iterative methods because

there is no known direct method. The optimization problem of available solvers is

often stated in terms of minimization. Therefore, instead of maximizing the log-

likelihood Eq. 4.8, we minimize the negative log-likelihood function. When the local

diffusion model is more complex than the one-parameter isotropic model, the objective

function often has more than one local minimum. We use both local optimization

and global optimization.

For local minimums, we use constrained nonlinear optimization with linear con-

straints

Aineq · p ≤ bineq, (4.11)

as well as lower bound lb and upper bound ub, such that lb ≤ p ≤ ub. We compare

different gradient-based algorithms (Byrd et al., 1999, 2000, 2006) available in MAT-

LAB and KNITRO (Byrd et al., 2006) on our optimization problems and use interior

point methods. In order to compare different available local optimization methods,

we run different solvers from the same set of starting points to find local minimums.

In Fig. 4.1, we plots all the local maximums of the log-likelihood function found from

a set of random starting points by each method on fitting the biGaussian model to

data. In the comparison, the interior point algorithm reaches local minimums similar

to the global minimum for more starting points.

We use lower bound lb and upper bound ub to limit the tensor size, as well as

the range of Euler angles. The linear constraints Eq. 4.11 are used to assure proper

ordering of eigenvalues. The Hessian matrix is computed numerically by central

difference of the gradient. The solvers scale the objective function and constraints.

It is common for the objective function Eq. 4.8 to have multiple local minimums.

Even for a diffusion tensor model with fixed eigenvalues, the objective function may

have multiple local minimums. Running the interior point search from equal-spaced
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Figure 4.1: Comparison of different local optimization methods on fitting the biGaus-
sian model to data from the same set of starting points. Local maximums returned by
each method are plotted in a box plot. On each box of the box plot, the central mark
is the median of values, the edges of the box are the 25th and 75th percentiles, the
whiskers show the most extreme data points not considered outliers, and outliers are
plotted individually using “+”. All three methods returns multiple local maximums
that have log-likelihood value similar to that of the global maximum. However, the
active set method only returns a few good local maximums and the global maximum
is returned by the interior point method.

grid points in a subspace of the parameter space leads to multiple local minimums. By

clustering on the vectors rotated by the local minimums into three clusters, we got the

approximate basins of attraction of the specific optimization algorithm on the data.

The clustering is based on the cosine of the included angle between rotated vectors,

and the number of clusters is decided visually. We plot the basins of attraction and

the local gradients in Fig. 4.2. When working on the biGaussian model, we notice

that the solvers return multiple local minimums.

We use multiple restart on simpler models and global optimization (Ugray et al.,

2007) for biGaussian models. For using multiple restarts, we run the local solver from

randomly picked starting points within the bounds given by lb and ub, and choose

the local minimum with lowest objective function value. For the global optimization

approach, a large set of trail points are evaluated and only some of them are used as

starting points (Ugray et al., 2007).
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Figure 4.2: Basins of attractions and local gradients of the negative log-likelihood
function of fitting a diffusion tensor to synthetic data.

Local Maxima and Multiple Global Maxima

Optimization algorithms cannot always reach the global maxima. When the objective

function has local maxima, we choose multiple starting points randomly and pick the

solution that maximizes the likelihood. For simple models, e.g., the diffusion tensor

model, we can analytically compute the LS solutions as starting points, which help

avoid local maxima problem. However, when working on more complex models, e.g.,

the biGaussian model, optimization algorithms suffer from local maxima. We had

no practical method to find good starting points for biGaussian model. Therefore

we choose enough starting points so that we have some confidence that the global

maxima can be reached. More than 300 starting points are used with real data.

There may be multiple local maxima with likelihood values similar to the global

maxima. Our simulations on the biGaussian model show that this phenomenon is

common. It indicates that we should not use the likelihood value as the only criterion

for complex models. One of the possible reasons is that the diffusion profiles of some
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configurations do not show obvious biGaussian structure. Instead of picking the

global maxima or picking one of multiple global maxima, we report all solutions

with likelihood value similar to the global maxima as candidates. When a voxel

of biGaussian model is encountered, tractography algorithm can use neighborhood

information to pick one candidate from those reported by model fitting process.

Variance of Estimator

The variance of parameter can be used to measure the reliability of the estimates.

Larger variance indicates the estimates are less precise. Generally, the estimates from

MLE can be considered following a normal distribution. The confidence interval can

then be derived from the variance.

Asymptotic normality

The distribution of an estimate obtained from MLE tends to a normal distribution

when the sample size increases to infinity. The mean of this distribution is the

parameter p being estimated, and the covariance matrix Σ is the inverse of Fisher

information matrix I(p). The Fisher information matrix is defined as the Hessian

matrix of the log-likelihood function Eq. 4.8. As we only have the estimation of p,

which is p̂mle, we use

N(p̂mle, I−1(p̂mle)) (4.12)

to approximate N(p, I−1(p)).

Covariance matrix Σ can also be estimated from outer product of gradient of

likelihood function L. Let J be the Jacobian matrix of L when L is maximized,

(J ′J)−1 is the estimate of covariance matrix.

Estimating the covariance matrix Σ using Fisher information matrix or outer

product of gradient is straightforward and does not require much computation. The

Hessian matrix can be computed from the Jacobian matrix, which is often computed
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analytically for gradient based optimization. However, the variance of the estimator

also depends on the solver used in optimization. For example, the variance of the

estimate will be greater if the step size or tolerance is too large.

Bootstrapping

Bootstrapping method can be used to estimate properties of an estimator by mea-

suring them from an approximating distribution. A standard way of getting an ap-

proximating distribution is to resample the data with replacement to get the same

number of samples.

For diffusion-weighted data, we have one or more repetitions on each gradient

direction. We treat a measurement on gradient direction ~gi as a sample. As the

number of gradient directions is generally large for HARDI data, we use the Monte

Carlo approach to perform the resampling. The procedure of bootstrapping is simple

but it requires a lot of computation.

Simulation

We evaluate the MLE approach by simulation. Parameters estimated from the models

are compared to the true values used to generate the data. We use the 60 vertices

of the truncated icosahedron showed in Fig. 2.5(a) as gradient directions to generate

diffusion-weighted data.

Isotropic and Diffusion Tensor Models

For both isotropic model and diffusion tensor model, we generate synthetic data

from diffusion tensor model. Diffusion-weighted images are generated with differ-

ent eigenvalues and different b-values. Rician noise with predefined parameter σ

is then added to the diffusion-weighted image. For the isotropic model, we use

(1200, 1190, 1180)× 10−6 mm2 /s as eigenvalues to generate nearly isotropic diffu-
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sion profiles; for the diffusion tensor model, we use (800, 300, 300)× 10−6 mm2 /s,

(800, 400, 400)× 10−6 mm2 /s, (1200, 400, 300)× 10−6 mm2 /s, and (1200, 300,

300)× 10−6 mm2 /s as eigenvalues to generate diffusion tensors of different shapes.

We also add rotations to the diffusion profiles to test the parameterization of the

diffusion tensor model.

BiGaussian Model

We use the same eigenvalues for both tensor compartments to generate biGaussian

profile. We change the angle τ between the two tensor compartments to simulate

fiber crossing at different angles.

When evaluating the fitting results, we mainly focus on tensor orientations. The

angle difference ηerr (Tuch et al., 2002) is defined as

ηerr =
1

2
min{arccos(~̂e1 · ~e1) + arccos(~̂e2 · ~e2), arccos(~̂e1 · ~e2) + arccos(~̂e2 · ~e1)}, (4.13)

where ~e1 and ~e2 are the true principal eigenvectors used to generate the synthetic

data, and ~̂e1 and ~̂e2 are the principal eigenvectors recovered by optimization.

We create biGaussian profiles by mixing two tensors of different shape: the “thin”

tensor has eigenvalues (1200, 300, 300)× 10−6 mm2 /s and the “wide” tensor has

eigenvalues (1200, 400, 400)× 10−6 mm2 /s. Simulation is carried out for different

b-values and for models with different numbers of parameters. We use 0.48 as the

volume ratio so that the weights of the two tensor compartments are similar.

Phantom Experiments

We use the rat phantom data described in Ch. 2 to conduct phantom experiments.

We compare the recovered ADC profile with the noisy ADC profile to assess the

quality of fitting, because the true parameter values are unknown. The goodness of

the fit is measured by the log-likelihood function Eq. 4.8. A region of interest (ROI)
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in an x − z slice containing two fiber crossing is identified manually and shown in

Fig. 4.3.

Figure 4.3: The crossing region of the rat phantom, marked with a rectangle on the
FA map.

Human Brain Data

We fit different diffusion models to the human brain data described in Ch. 2. A

5× 3 ROI shown in Fig. 4.4 including part of the cingulum tract and part of the

corpus callosum is manually identified on a coronal slice. The two rows from top are

within the cingulum tract, and two rows from bottom are within the corpus callosum.

The third row contains a mixture of the above two. The crossing region can also be

identified visually by the shape of the ADC profiles in Fig. 4.13(a).

4.3 Results

Simulation

Isotropic Model

We gather the results of the following approaches

1. recovering the diffusion coefficient using the MLE method;
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Figure 4.4: The crossing region of the human brain data, marked with a rectangle
on a coronal slice of the FA map. Both the cingulum tract and the corpus callosum
are included in the ROI.

2. solving Eq. 1.2 using linear LS directly without processing the Rician noise;

3. recovering the underlying diffusion-weighted signal assuming Rician noise and

then solving Eq. 1.2 using linear LS.

Recovering the underlying diffusion-weighted signal with high noise level, high

b-values and no repetition does not work well, because the diffusion-weighted signals

are often weak. So we only compare the result of the MLE method with that of

solving Eq. 1.2 directly.

The result of the MLE method is similar to that of solving Eq. 1.2 using linear

LS directly. We carry out paired samples t-test and no significant difference between

the results is found when N is small, i.e., N = 100. To compare the MLE and the

LS method, the diffusion coefficient from a voxel of the rat phantom is estimated

using both methods. The variance estimated from both methods using asymptotic

normality and bootstrapping using 10000 samples are plotted in Fig. 4.5. We plot

the histograms of the diffusion coefficient D estimated from each sample of the boot-

strapping, as well as the normal distribution fitted to the histogram.

64



www.manaraa.com

1900 1950 2000 2050 2010
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

D ( 10− 6mm 2/s e c )

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

 

 

Bootstrapping

MLE

(a) MLE

1900 1950 2000 2050 2010
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

D ( 10− 6mm 2/s e c )

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

 

 

Bootstrapping

LS

(b) LS

Figure 4.5: Histograms of the diffusion coefficient D estimated from the isotropic
diffusion model using MLE and the LS method for estimating the variance of each
estimator, obtained from bootstrapping. The normal distributions fitted to the his-
tograms are shown using dotted line, and the normal distributions obtained from
asymptotic normality for both methods are plotted using solid line.

Diffusion Tensor Model

In fiber tracking, we mainly use the principal eigenvector of the diffusion tensor as

the local orientation. So, we compare the angle difference between the ground truth

value used to generate the synthetic data with the result of the MLE method and

that of the LS method.

We carry out one-tailed paired samples t-test to compare the results of the two

methods. The angle difference of the MLE method is smaller for some configurations

with higher b-value, higher noise level and more anisotropic tensor shapes. This is

expected because the MLE approach takes the Rician noise into consideration, even

if there is no repetition. Simulation result of some test settings are shown in Fig. 4.6

as box plots.
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Figure 4.6: Simulation result of fitting the diffusion tensor model to data using the
MLE method and the LS method. For each b-value and σ combination, the same
input is used to compare the two methods. 50 trials are used to create each box of
the box plot. On each box of the box plots, the central mark is the median of values,
the edges of the box are the 25th and 75th percentiles, the whiskers show the most
extreme data points not considered outliers, and outliers are plotted individually using
“+”. (a) Λ = (1200, 300, 300)× 10−6 mm2 /s, b = 2000 s/mm2, and σ = 4, 6, and 8;
(b) Λ = (1200, 400, 300)× 10−6 mm2 /s, b = 1000, 2000, and 3000 s/mm2, and σ = 6.

BiGaussian Model

The angle error ηerr of fitting the biGaussian models to data with Rician noise added

are shown in Fig. 4.7, for τ between 30◦ and 90◦. We carry out global optimization for

50 trails to create the box plots for each test configuration. The simulations show that

the angle error is smaller for larger b-values, more anisotropic tensor compartments

and fewer numbers of parameters.

Phantom Experiments

Four repetitions of the rat phantom were scanned. Ideally we can use these four

repetitions as a larger sample. However, from the diffusion-weighted images of the

four repetitions, we notice that the repetitions are not well aligned. Therefore, we fit

these four repetitions individually without registering them, to avoid blurring the thin
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(c) Λ = (1200, 300, 300)× 10−6 mm2 /s; b =
1000 s/mm2; 13 parameters
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(d) Λ = (1200, 400, 400)× 10−6 mm2 /s; b =
3000 s/mm2; 10 parameters

Figure 4.7: Simulation results of fitting the biGaussian model to data using the MLE
approach. Box plots are shown for different b-values, different tensor shapes, and
different number of parameters. On each box of the box plots, the central mark is the
median of values, the edges of the box are the 25th and 75th percentiles, the whiskers
show the most extreme data points not considered outliers, and outliers are plotted
individually using “+”.
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fibers with resampling. ADC profiles from the four repetitions of the same crossing

region are shown in Fig. 4.8 to illustrate the difference between them, especially the

voxel in the center of the region.

(a) repetition 1 (b) repetition 2 (c) repetition 3 (d) repetition 4

Figure 4.8: Noisy ADC profiles within the crossing region shown in Fig. 4.3 of the rat
phantom to show the difference of different repetitions caused by noise and imaging
artifacts.

We apply MLE method on the rat phantom using the isotropic model, the diffusion

tensor model and the biGaussian models. The noise level of each individual diffusion-

weighted image is estimated in Ch. 2. In our experiment, more complex models have

higher likelihood values, indicating they fit the data better.

Since the individual unweighted images were not saved by the scanner and only

the average is available, we use the averaged value for S0.

ADC profiles of the region shown in Fig. 4.3 recovered from different diffusion

models are shown in Fig. 4.9, and the log-likelihood values are plotted in Fig. 4.10

as horizontal bar graphs. The shapes of the ADC profiles show that the diffusion

tensor model fits most of the voxels well. For voxels exhibiting crossing structures,

the biGaussian models fit the noisy ADC profiles better than the diffusion tensor

model does. However, from the shapes of the ADC profiles and the log-likelihood

values, we find that the biGaussian model with 13 parameters is only slightly better

than the biGaussian model with 10 parameters for these voxels.

Local fiber orientations recovered from the diffusion tensor model and the bi-
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(a) (b)

(c) (d)

Figure 4.9: Fitting different diffusion models to the crossing region of the rat phantom
data. The crossing region is shown in Fig. 4.3. (a) Noisy ADC profiles of the crossing
region; (b) ADC profiles recovered from the diffusion tensor model, together with
the principal directions of the diffusion tensors; (c) ADC profiles recovered from
biGaussian model with 10 parameters, together with the principal directions of each
tensor compartments; (d) ADC profiles recovered from biGaussian model with 13
parameters, together with the principal directions of each tensor compartments. The
ADC profiles of some voxels are scaled to show the details with good contrast.
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Gaussian models of the same crossing region are also plotted in Figs. 4.9(b), 4.9(c),

and 4.9(d). The fiber orientations recovered from the biGaussian models are more

reasonable than those recovered from the diffusion tensor model for voxels within the

crossing area. However, the difference between the results of the biGaussian mod-

els with different numbers of parameters is not significant. For the diffusion tensor

model, fiber orientation recovered from a more anisotropic voxel is more reliable than

that recovered from a more isotropic voxel.
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Figure 4.10: Log-likelihood values of fitting the diffusion tensor model, the biGaussian
model with 10 parameters and the biGaussian model with 13 parameters to the
crossing region of the rat phantom shown in Fig. 4.3. Log-likelihood values of the
three diffusion models are plotted for each voxel within the ROI as horizontal bars
from top to bottom.

We estimate the asymptotic covariance matrix of the ML estimator using Eq. 4.12.

The covariance matrix as well as the marginal distributions of the eigenvalues and

Euler angles are plotted separately.

We fit the diffusion tensor model to the diffusion profile of a voxel within a single

fiber tract. Figs. 4.11(a) and 4.11(b) show the covariance matrix of the ML estimator.

The diffusion tensor model describes the anisotropic diffusion within that voxel well

and the covariance is small.
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The diffusion tensor model is fit to the diffusion profile of a voxel containing cross-

ing fiber tracts, and the covariance matrix of the estimator is plotted in Figs. 4.11(c)

and 4.11(d). Both the planar-shape of the tensor characterized by λ1 ≈ λ2 > λ3

in Fig. 4.11(c) and the covariance matrix of the Euler angles shown in Fig. 4.11(d)

indicate that the uncertainty of the principal eigenvector is large.

We also fit the biGaussian model with 10 parameters to the diffusion profile of the

same voxel and the covariance matrix is plotted in Fig. 4.12. The distribution of the

estimated Euler angles fitted to the biGaussian model is narrower than that of fitting

to the diffusion tensor model, because the biGaussian model describes the data of

a fiber crossing voxel better. However, the relatively wide distribution in Fig. 4.12

indicates that the quality of fitting is not as good as that of Figs. 4.11(a) and 4.11(b).

Human Brain Data

Result of fitting different diffusion models to the human brain data is shown in

Fig. 4.13 and the log-likelihood values are shown in Fig. 4.14. Original noisy ADC

profile as well as ADC profiles recovered from different diffusion models are plotted

together with principal directions of tensor compartments. For the voxels except the

third row, which is the crossing region, ADC profiles recovered by different diffusion

models are similar, but the principal directions recovered from diffusion tensor model

are better aligned with the tract orientations. For the crossing region, the directions

recovered from biGaussian models exhibit expected crossing pattern.

4.4 Discussion

The major advantage of our method over the MAP approach is that we do not

need the prior distribution and provide information based on the diffusion profile

only. Feedback from the fiber tracking algorithms may improve the result, but it is

more likely to introduce artifacts. Another benefit is that we are able to use all the
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Figure 4.11: The variance shown as PDF of the marginal distributions of parameters
estimated from the diffusion tensor model. The parameters shown in (a) and (b)
are estimated from a voxel within a single spinal cord of the rat phantom, and the
parameters shown in (c) and (d) are estimated from a voxel within the crossing region
of the rat phantom. The marginal distributions are obtained from the covariance
matrix estimated from the asymptotic covariance of the ML estimator of the diffusion
tensor model.
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(c) Euler angles of the second tensor

Figure 4.12: The variance shown as PDF of the marginal distributions of parameters
estimated from a voxel of the rat phantom containing two tract crossing, using the
biGaussian model with 10 parameters. The marginal distributions are obtained from
the covariance matrix estimated from the asymptotic covariance of the ML estimator
of the diffusion tensor model.
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(a) (b)

(c) (d)

Figure 4.13: Fitting different diffusion models to the crossing region of the human
brain data. The crossing region is shown in Fig. 4.4. (a) Noisy ADC profiles of the
crossing region; (b) ADC profiles recovered from the diffusion tensor model, together
with the principal directions of the diffusion tensors; (c) ADC profiles recovered from
biGaussian model with 10 parameters, together with the principal directions of each
tensor compartments; (d) ADC profiles recovered from biGaussian model with 13
parameters, together with the principal directions of each tensor compartments. The
ADC profiles of some voxels are scaled to show the details with good contrast.
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Figure 4.14: Log-likelihood values of fitting the diffusion tensor model, the biGaussian
model with 10 parameters and the biGaussian model with 13 parameters to the
crossing region of the human brain data shown in Fig. 4.4. Log-likelihood values of
the three diffusion models are plotted for each voxel within the ROI as horizontal
bars from top to bottom.

measured DWI data, instead of rejecting the measurement as outliers when they are

far from the predicted values.

On the other hand, the method we proposed suffers from the same problems as

those search-based descriptive methods (Cao et al., 2007). The quality of solution

depends on both the starting points and the optimization algorithm. And, calculating

the likelihood functions is computationally intensive, preventing us from using more

starting points when computation resource is limited. Another problem that is also

found in the MAP method is that the allowable parameter set P is chosen arbitrarily.

However, we can overcome those issues by carrying out more computation, because

the optimization of different voxels can be done independently which is suitable for

more advanced high performance computer architectures.

Also, we need to find a strategy to deal with the scenario that different candidate

solutions have similar likelihood values.

Copyright c© Ning Cao, 2013.
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Chapter 5 Model Selection

In Ch. 4, we focus on fitting diffusion models to data. Models with more parameters

generally fit the data better. However, the models with more parameters sometimes fit

the data only slightly better. The additional parameters that do not present anything

useful are not desired. Overfitting caused by random error or noise sometimes leads

to artifacts in fiber tracking thus should be avoided by assessing the quality of the

fitting. Model selection is the process of choosing the best model from a set of

candidate models for the given data. A good model selection algorithm balances

the goodness of fit with the number of parameters. In this chapter, we discuss model

selection algorithms based on likelihood values obtained from MLE described in Ch. 4.

5.1 Introduction

Most people believe that the diffusion tensor model only derives a single fiber orien-

tation. When more complex models that support two or more fiber orientations are

also supported by the diffusion profile, model selection is always involved to justify

the choice of a particular model. The underlying idea is to check if the diffusion ten-

sor model is capable of describing the observed data. It is straightforward to define

some measurements of goodness of fit, and then use empirical thresholds to decide

which model to choose. For example, Pearson’s correlation of 0.95 are used as a

threshold to decide if the diffusion tensor model agrees with the observed diffusion

profile well (Tuch et al., 2002). The drawback of this approach is that only the data

is considered. To be more specific, the goodness of fit of the models other than the

diffusion tensor model is not checked. When a model does not fit the data well, we

should evaluate the goodness of fit of other candidate models together with the in-

creased complexity, to avoid the risk of selecting a more complex model, which is not
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significantly better or even worse.

On the other hand, fiber orientation density function (Tournier et al., 2004) is a

model-free approach that provides a continuous distribution of fiber orientation.

5.2 Method

Candidate Models

Choosing the set of candidate models is a critical task in determining the best

model (Burnham and Anderson, 2002). It always involves developing a global model

and deriving some special cases of the global model by reducing the number of pa-

rameters. We use the Gaussian mixture model Eq. 1.22 as the global model. The

isotropic model Eq. 1.2, the diffusion tensor model Eq. 1.6, and the biGaussian model

Eq. 1.19 are special cases derived from the Gaussian mixture model. The isotropic

model is the simplest diffusion-weighted model; the diffusion tensor model is widely

accepted and has been validated in many studies; the biGaussian model is also used

in many studies and some promising results have been presented.

There are straightforward methods to fit the isotropic model and the diffusion

tensor model. But, fitting of more than two Gaussian compartments was often not

numerically stable (Tuch et al., 2002; Kreher et al., 2005). Therefore, our set of

candidate models includes the isotropic model, the diffusion tensor model, and the

biGaussian model.

Hypothesis Testing

One advantage of the MLE approach is that the value of the log-likelihood function

Eq. 4.8, along with the estimated variance, can be used by statistical tests of model

selection.

Likelihood ratio test, Wald test and Lagrange multiplier test are statistical tests

that compare the fit of two models, one of which is nested within the other. The
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nested model is often called the null model or the restricted model, while the other

is often called the alternative model or the unrestricted model. Likelihood ratio test

requires the estimate of both the restricted and the unrestricted models, while Wald

test and Lagrange multiplier test need the estimate of one of the models as well as

the covariance matrix. The test statistic of likelihood ratio test is given by

D = −2 log(
L0

LA
), (5.1)

where L0 is the likelihood of the null model, and LA is the likelihood of the alternative

model. Let k0 denote the number of free parameters of the null model and kA be that

of the alternative model. The distribution of the test statistic is approximately a χ2

distribution with degrees of freedom (DOF) being kA − k0.

The isotropic model is a special case of the diffusion tensor model, and the diffusion

tensor model is a special case of the biGaussian model. For biGaussian models with

different numbers of parameters, the 10-parameter model is a special case of the 13-

parameter one. In these cases, the model with more parameters generally fits the

data better, unless there are more constraints on the more complex model.

Multiple Comparisons

Multiple comparisons arise when we carry out many statistical tests simultaneously.

Diffusion-weighted images always have a large number of voxels, because the voxel

size is relatively small compared to the physical size of the subject. In order to select

a local diffusion model for each voxel, we use the same test repeatedly for each voxel.

Correction of the significant value should be done to avoid increasing type I error,

which is the incorrect rejection of a true null model.

One of the most commonly used approaches is Bonferroni correction. In Bonfer-

roni correction, the experiment-wide significance level ᾱ is given by α/n, where n is

the number of independent comparisons to be performed, and α is the per comparison

significance level. It is simple to calculate but it is very conservative.
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Model Selection Criteria

Hypothesis tests are only defined for the situation that the null model is nested within

the alternative model. However, we often need to compare non-nested models or a

set of candidate models.

Akaike information criterion (AIC), derived from information entropy, is a measure

of relative goodness of fit of a model (Akaike, 1974). AIC is defined as

AIC = 2k − 2 log(L), (5.2)

where k is the number of parameters of the model, and L is the maximum value of

likelihood function found by MLE. When we have AIC values for a set of candidate

models, and let AICmin denote the AIC of the minimum of them, the quantity

exp(
AICmin − AICi

2
) (5.3)

is the relative likelihood of model i.

While the statistical tests are only valid for nested models, AIC can be used in

other scenarios as well.

Similar measures can also be used. Akaike information criterion with correction

(AICc), which is AIC with a correction for finite sample sizes, has a greater penalty

for introducing extra parameters (Sugiura, 1978). It is defined as

AICc = AIC +
2k(k + 1)

n− k − 1
, (5.4)

where n is the sample size. As we generally assume the estimator is normally dis-

tributed, we can also use Bayesian information criterion (BIC) (Schwarz, 1978), which

is defined as

BIC = −2 logL+ k log(n). (5.5)

Note that it is possible and common to get different results by using different

model selection criteria. In our phantom and human brain data experiments, the
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model selection results of three criteria are mostly consistent. However, for some

low anisotropy voxels, BIC prefers simpler models, which cohere with the author’s

intuitive choice.

Simulation

We carry out simulation for both statistical test of nested models and comparison of

multiple models.

We create two sets of synthetic data. One dataset is generated from diffusion

tensors with low anisotropy. The data is fit to the isotropic diffusion model and

the diffusion tensor model. The other dataset, which is generated from the mixture

of two diffusion tensors with different angle between them, is fit to the diffusion

tensor model and the biGaussian model with different numbers of parameters. We

do likelihood ratio test (1) between the isotropic diffusion model and the diffusion

tensor model, (2) between the diffusion tensor model and the biGaussian model,

and (3) between the biGaussian model with different numbers of parameters. We

also calculate AIC and AICc to compare multiple models of the second dataset.

The first dataset is created from diffusion tensor with eigenvalues in the format of

(λa, λb, λb), where λa = 1200× 10−6 mm2 /s and λb changes from 840× 10−6 mm2 /s

to 1200× 10−6 mm2 /s, to include diffusion tensors with different degree of anisotropy.

The second dataset is created by mixing two diffusion tensors with the same shape.

The eigenvalues of the tensor compartments are also in the format of (λa, λb, λb),

with value (1200, 300, 300)× 10−6 mm2 /s. The angle τ between the two tensors

compartments varies from 30◦ to 90◦. The test data has 60 diffusion-weighed images

as shown in Fig. 2.5(a) and three unweighed images. Rician noise of σ = 6 is added

to both diffusion-weighted and unweighted images to simulate the real noise level we

have in the phantom data.

80



www.manaraa.com

Phantom Experiments

We carry out likelihood ratio test on the rat phantom data described in Ch. 2.

Likelihood ratio test between the diffusion tensor model and the isotropic diffusion

model are used to segment voxels into agar and spinal cords. We fit diffusion-weighted

data to both diffusion models and record the log-likelihood values at each voxel.

For each voxel, the test statistic is computed to derive the p-value. The likelihood

ratio test is carried out on a ROI whose dimension is 35× 32. The experiment-wide

significance level ᾱ is set to 5%, thus the per comparison significance level α with

Bonferroni correction is given by 0.05/1120 ≈ 4.5× 10−5.

Likelihood ratio test is performed between the diffusion tensor model and the bi-

Gaussian model on the 5× 5 region shown in Fig. 4.3. We use the same experiment-

wide significance level ᾱ = 5%, and the per comparison significance level with Bon-

ferroni correction is 0.05/9 ≈ 5.6× 10−3.

We also use model selection criteria on the same region to choose a model from

the isotropic diffusion model, the diffusion tensor model and the biGaussian models.

5.3 Results

Simulation

Hypothesis Testing

Isotropic model and diffusion tensor model Log-likelihood values obtained

by fitting the isotropic diffusion model, the restricted model, and the diffusion tensor

model, the unrestricted model, are plotted in Fig. 5.1. For each configuration of λb/λa,

we draw 100 trials. For each trail, FA value is calculated from the diffusion tensors.

Although only a few discrete values of λb are used in the simulation, the FA value

of all trials seems to be continuous because of the effect of added noise. A decrease

in log-likelihood value indicates that the model is not likely to describe the data. In

81



www.manaraa.com

Figs. 5.1(a) and 5.1(c), log-likelihood value of the isotropic model decreases as the

FA value increases, indicating that the isotropic diffusion model does not describe

the diffusion profile well when anisotropy becomes stronger. However, Figs. 5.1(b)

and 5.1(d) show that log-likelihood value almost remains the same when the FA

value increases, because the diffusion tensor model is capable of describing anisotropic

Gaussian diffusion.
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(a) isotropic model, b = 1000 s/mm2
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(b) diffusion tensor model, b = 1000 s/mm2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−220

−210

−200

−190

−180

−170

−160

FA

lo
g

−
li
k
e

li
h

o
o

d

(c) isotropic model, b = 3000 s/mm2
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(d) diffusion tensor model, b = 3000 s/mm2

Figure 5.1: Log-likelihood value obtained by fitting the isotropic model and the dif-
fusion tensor model to synthetic data with different FA value.

The p-value of likelihood ratio test between the isotropic diffusion model and the

diffusion tensor model for different b-values are shown in Fig. 5.2. We plot the p-value
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versus the FA value. The isotropic diffusion model is rejected at significance level α

if the p-value is below α. From the plot we can see that the statistical test does not

always equal choosing a single FA value as threshold. An FA value may be used as

threshold to get the same effect as likelihood ratio test for b = 1000 s/mm2 as shown

in Fig. 5.2(a), however, it can be seen from Fig. 5.2(b) that it is not feasible to use a

single FA value as threshold for b = 3000 s/mm2.
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(a) b = 1000 s/mm2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FA

p
−

v
a
lu

e

(b) b = 3000 s/mm2

Figure 5.2: Simulation results of likelihood ratio test between the isotropic model
and the diffusion tensor model. The p-value of likelihood ratio test between the two
models is plotted versus FA value. The log-likelihood values used to calculate the
test statistic are shown in Fig. 5.1.

Diffusion tensor model and biGaussian model Log-likelihood values from the

diffusion tensor model and the biGaussian model with 10 parameters are plotted

in Fig. 5.3. We draw 40 trials for each test configuration. In Fig. 5.3(a), the log-

likelihood values do not change significantly when the angle τ increases. The log-

likelihood value drops in Fig. 5.3(c) when the angle τ increases, indicating that the

goodness of fit of the diffusion tensor model decreases when τ increases for high b-

values. This explains why higher b-value is preferred over lower b-values in HARDI

studies.
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(a) b = 1000 s/mm2, diffusion tensor model
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(b) b = 1000 s/mm2, biGaussian model
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(c) b = 3000 s/mm2, diffusion tensor model
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(d) b = 3000 s/mm2, biGaussian model

Figure 5.3: Log-likelihood value obtained by fitting the diffusion tensor model and
the biGaussian model with 10 parameters to synthetic data with different angle τ
between the two tensor compartments used to generate the biGaussian profiles. The
log-likelihood value for each different τ are shown as box plots. On each box of the
box plots, the central mark is the median of values, the edges of the box are the 25th
and 75th percentiles, the whiskers show the most extreme data points not considered
outliers, and outliers are plotted individually using “+”.
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Simulations of likelihood ratio test between the diffusion tensor model and the

biGaussian model are shown in Fig. 5.4. We follow the same method as above to

calculate the p-value of each trial. The figure shows that the biGaussian model is

preferred to the diffusion tensor model for most cases. However, diffusion tensor

model is not always rejected when the angle between the two tensor compartments

is small. Compared to the simulation result of b = 1000 s/mm2, the diffusion tensor

model is more often rejected at a small significant level than in the simulation of

b = 3000 s/mm2.

0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FA

 p
−

v
a

lu
e

 

 

30°

60°

90°

(a) b = 1000 s/mm2

0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FA

 p
−

v
a

lu
e

 

 

30°

60°

90°

(b) b = 3000 s/mm2

Figure 5.4: The p-values of likelihood ratio test between the biGaussian model with
10 parameters and the diffusion tensor model. The p-value of test statistic is plotted
versus τ . Trials for τ = 30, 60, and 90◦ are plotted using different markers.

BiGaussian models Because the synthetic data is generated with two tensor com-

partments of the same shape, the log-likelihood values obtained from fitting the two

biGaussian models do not differ much. Therefore, we only plot the p-value of the

likelihood ratio test between the two biGaussian models in Fig. 5.5. The biGaussian

model with fewer parameters is not likely to be rejected because it is simpler and is

able to describe the data as good as the more complex model.
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Figure 5.5: Simulation result of likelihood ratio test between the biGaussian models
with 13 parameters and 10 parameters. The p-value of the test statistic is plotted
versus FA value. Trials for τ = 30, 60, and 90◦ are plotted using different markers.

Phantom Experiments

Hypothesis Testing

Model selection between the diffusion tensor model and the isotropic diffusion model

with per comparison significance level adjusted by Bonferroni correction is shown

in Fig. 5.6(a). It shows that up to three voxels along the spinal cords are consid-

ered anisotropic by the statistical test, which complies with the fact that the diam-

eter of rat spinal cords is 5 mm and the voxel is 2.5 mm isotropic. The result of

using experiment-wide significance level without Bonferroni correction is shown in

Fig. 5.6(b) for comparison. The isotropic diffusion model is rejected by likelihood

ratio test on some voxels in the agar background if Bonferroni correction is not used.

Likelihood ratio test between the diffusion tensor model and the biGaussian model

of the crossing region described in Fig. 4.3 is plotted in Fig. 5.7(a).
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(a) with Bonferroni correction (b) without Bonferroni correction

Figure 5.6: Likelihood ratio test between the diffusion tensor model and the isotropic
diffusion model on a slice of the rat phantom data overlaid on FA map. Result of both
likelihood ratio test with and without Bonferroni correction are shown. The white
rectangles define the ROI where the test is carried out. Voxels where the isotropic
diffusion model is rejected are marked with a white dot.

Model Selection Criteria

Model selection result on the crossing region described in Fig. 4.3 is plotted in Fig. 5.7.

For each voxel, estimated ADC profile of the model picked by the model selection

criteria is plotted to compare with the original noisy ADC profile. Fitting result of

candidate models is already shown in Fig. 4.9. AIC, AICc and BIC give similar result

in this region.

5.4 Discussion

Hypothesis tests and model selection criteria are developed with different considera-

tion. Hypothesis tests assume the alternative model is true and test if the additional

parameters have any significant effect, while model selection criteria check the relative

quality of each model in a set of candidate models.

Model selection also depends on the sample size. While a simpler model may

underfit the data, a more complex model tends to overfit. Underfitting induces bias

and overfitting produces variability. With a larger sample size, the bias is the major
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(a) Likelihood ratio test (b) AIC

(c) AICc (d) BIC

Figure 5.7: Model selection results of the rat phantom on the crossing region defined
in Fig. 4.3. (a) shows the result of likelihood ratio test between the diffusion tensor
model and the biGaussian model with 10 parameters; (b), (c), and (d) show model
selection results on different criteria.
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(a) Likelihood ratio test (b) AIC

(c) AICc (d) BIC

Figure 5.8: Model selection results of the human brain data on the crossing region
defined in Fig. 4.4. (a) shows the result of likelihood ratio test between the diffusion
tensor model and the biGaussian model with 10 parameters; (b), (c), and (d) show
model selection results on different criteria.

89



www.manaraa.com

concern, and for a smaller sample size, attention should be paid to avoiding the

variability caused by overfitting.

In terms of selecting a local diffusion model for the given data, the choice depends

on the true model, which is the underlying structure within the voxel, the sample

size, and the noise level.

It is hard to validate model selection result using real data. Although people

prefer a biGaussian model for the voxels with fiber crossing or branching, the data

may not support the complexity. As mentioned in Ch. 3, the diffusion tensor model

may fit a voxel containing crossing tracts well enough. For the rightmost voxel of the

third row in Figs. 4.13 and 5.8, although the biGaussian model is able to recover two

tract orientations, as shown in Figs. 4.13(c) and 4.13(d), the preferred model selected

by likelihood ratio test and the three model selection criteria is the diffusion tensor

model, as shown in Fig. 5.8, because it is relatively simple and fits the ADC profile

well, which can be seen from Fig. 4.14. Note that the human brain dataset has a

relatively low b-value, which is 800 s/mm2, and relatively low angular resolution.

Although the model selection methods mentioned in this chapter always return

a preferred model from two models a set of candidate models, please note that the

preferred model may be only a little better than another model. Other criteria should

be used when the values of the relative likelihood Eq. 5.3 of two models are similar.

Copyright c© Ning Cao, 2013.
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Chapter 6 Tractography

6.1 Introduction

A neural tract, or neural pathway, connects relatively distant parts of the brain

or nervous system. It usually consists of bundles of neurons, which are covered

by the myelin sheath. Tractography, or fiber tracking, is the modeling process to

reconstruct neural tracts using diffusion-weighted data. Tractography algorithms can

be roughly classified into deterministic tractography and probabilistic tractography.

Most tractography methods are based on the streamline method.

In this chapter, we describe how we improve tractography by taking local orien-

tation uncertainty into consideration.

Streamline Method

Streamlines are widely used in the study of fluid flow, which is characterized by a

three-dimensional velocity vector field. Streamlines are curves formed by tangent

lines to the velocity vector of the flow, and are used to visualize vector fields. Local

directions in three-dimensional grid recovered from diffusion-weighted data is similar

to steady flow, in which the velocity field does not change over time. The streamline

fiber tracking method can be described as finding the solution of the following ordinary

differential equation with a given initial value (Basser et al., 2002)
~y′(t) = f(~y(t))

~y(t0) = ~y0,

(6.1)

where f(~y) is the local direction at position ~y, ~y(t) is the path of the tract, which is

parameterized by the arc length t, and ~y0 is the seed point. The initial value problem

can be solved by the Euler method, which is a first-order numerical method to solve
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an initial value problem. The global error of the Euler method is proportional to the

step size. The Euler method is the simplest Runge-Kutta method, while Runge-Kutta

methods of higher order give better result with the same step size.

The streamline algorithm and its variants often have several aspects. Seed point

selection is often performed by an operator on the co-registered T1-weighted image or

the FA map. Both the centers of each voxel (Mori et al., 1999) within the ROI and

multiple points within each voxel (Basser et al., 2002) are used. Local tract orien-

tation of each voxel can be obtained from a diffusion model or without a particular

diffusion model. Propagation is the process of solving the initial value problem or

simply the method of deciding the next point of the tract. Termination criteria, or

stopping criteria, are the standards by which the propagation should stop. Many im-

plementations stop the propagation when the anisotropy is lower than an anisotropy

threshold or the angle between directions of neighboring segments of the tract is larger

than an angle threshold.

Regarding the quality of tracts, many factors contribute to the accumulated error

of the tracts (Tournier et al., 2002): (1) the spatial resolution is relatively low com-

pared to tract size; (2) the diffusion-weighted images are noisy thus uncertainty of

local direction can be large; (3) total accumulated error of solving initial value prob-

lem can be large for long tracts. The total accumulated error can be improved by

using higher order methods, but the spatial resolution and SNR cannot be improved

easily.

Although other tractography methods have been proposed in recent years (Parker

et al., 2002, 2003; Tournier et al., 2003; Behrens et al., 2003; Tuch et al., 2003;

Campbell et al., 2005; Parker and Alexander, 2005; Kang et al., 2005a,b; Zhang

et al., 2005b,a; Behrens et al., 2007; Descoteaux et al., 2009), the streamline method is

still popular and is available through major MR hardware manufacturers (Mukherjee

et al., 2008) and third parties.
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Deterministic Tractography

Most deterministic tractography algorithms are derived from the streamline method

directly. They differ from the streamline method on one or more aspects discussed

above.

Because the distance between two neighboring points on a tract is often smaller

than the size of a voxel, which is often around 2 mm, interpolation or approximation

are used to get local direction or anisotropy value at sub-voxel accuracy when a dif-

fusion model is fit to data. Fiber assignment by continuous tracking algorithm (Mori

et al., 1999) uses nearest-neighbor interpolation, while tri-linear interpolation (Con-

turo et al., 1999), B-spline interpolation (Basser et al., 2000; Pajevic et al., 2002),

and B-spline approximation (Basser et al., 2000; Pajevic et al., 2002) are also used.

Interpolation and approximation can be done on diffusion-weighted signals (Conturo

et al., 1999) or computed diffusion tensor components (Basser et al., 2000; Pajevic

et al., 2002).

Besides recovering local direction based on a diffusion model, local direction can

also be recovered using q-space methods (Tuch et al., 2003; Behrens et al., 2007;

Descoteaux et al., 2009).

For solving the initial value problem Eq. 6.1, both the Euler method (Conturo

et al., 1999) and the higher-order Runge-Kutta methods (Basser et al., 2000) are

used. Tensor deflection is also proposed to allow fiber tracts to pass through crossing

regions (Lazar et al., 2003).

Deterministic methods are relatively easy to understand and implement, but they

share the same limitations as the streamline method.

Limitations

There is no indicator on reliability of the tracking result on a given input. When it

comes to local directions, deterministic method only takes one direction, which does
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not consider the data quality. As a result of low SNR, one may find that the tracts

from two nearby seed points differ a lot. Another phenomenon is that sometimes

many individual tracts are short, although they follow the major trend of a fiber

bundle. This can commonly be seen in thin fiber tracts.

Sometimes it is difficult to choose seed points. Because of the low SNR nature

of diffusion-weighted data (Taylor et al., 2004; Parker, 2004) and the accumulated

error of propagation, most tracts recovered by deterministic methods are relatively

short. As mentioned above, moving a seed point by a short distance may create

a very different tract. Sometimes an operator has to spend long time to move the

seed points to get a satisfying tract. Full-brain tracking is proposed to solve this

problem (Conturo et al., 1999; Stieltjes et al., 2001). Full-brain tracking method uses

seed points all over the whole data volume, often with several seed points within each

voxel. Full-brain tracking makes recovering satisfying tracts easier, but we still need

select good fiber tracts from many candidates. Using ROIs at both ends of the tracts

works when the tracts are long enough; otherwise fiber clustering algorithms (Liang

et al., 2009) may help.

Fiber tracts of the rat phantom obtained from the streamline algorithm and the

whole-brain tracking method are shown in Fig. 6.1. Configuration of the phantom is

shown in Fig. 2.6. Fourth-order Runge-Kutta method with step size being 1.0 is used

to generate both figures. Although the configuration is simple and the seed points

are located at the center of each tract, the recovered tracts are much shorter than

the length of the neural cords. For the whole-brain tracking, most of the fiber tracts

are also short.

Probabilistic Tractography

Deterministic tractography algorithms reconstruct a single tract for each seed point,

while probabilistic tractography algorithms provide multiple tracts for the same seed
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(a) streamline method (b) whole-brain tracking

Figure 6.1: Fiber tracts reconstructed from the streamline method and the whole-
brain tracking method. The two seed points used for the streamline method are
marked as “×” and the ROI containing all seed points used for whole-brain tracking
is shown as a rectangle. The tracts are overlaid with FA map and the two directions
of a tract from the seed point are plotted in different colors.

point or a probability distribution of connectivity.

Most probabilistic tractography methods are derived from deterministic methods.

The difference between a probabilistic tractography algorithm and its deterministic

counterpart is that the local direction is chosen randomly at each voxel. The local di-

rection can be drawn from diffusion tensor randomly based on FA value (Parker et al.,

2003), using bootstrap methods (Jones and Pierpaoli, 2005), or from Bayesian infer-

ence (Behrens et al., 2003). Probabilistic tractography can also be achieved by using

different propagation methods (Parker et al., 2002; Tournier et al., 2003; Kang et al.,

2005a). In a similar way to deterministic tractography, q-space methods (Campbell

et al., 2005; Parker and Alexander, 2005; Descoteaux et al., 2009) can also be used

to decide a probability distribution of the local direction.

6.2 Method

We propose a probabilistic tractography method based on the MLE described in

Ch. 4, which extends the streamline method.
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Local tract orientation as a three-dimensional vector is often not in the parameters

being estimated thus it has to be computed from the parameters. In diffusion tensor

model Eq. 1.6, local direction is obtained by diagonalization of the diffusion tensor D

by Eq. 1.8. In the MLE approach described in Ch. 4, local directions can be computed

from the Euler angles by Eq. 1.11.

From the software engineering point of view, we factor the streamline algorithm

into a driver program and a callback function. The driver program solves the initial

value problem using the Euler method or the Runge-Kutta method, while the callback

function takes the location and a reference direction as input and returns a local

direction. Global stopping criteria are checked in the driver program, and local

stopping criteria, like the FA threshold and the maximum angle difference, can be

handled in either the callback function or the driver program. When we modify the

streamline method, the driver program does not change. For the simplest streamline

method, the callback function returns a single direction for each voxel. When multiple

local directions are supported, the callback function chooses one direction from all

available directions using the reference direction as a hint. For probabilistic tracking,

the callback function returns a random local direction each time it is called by the

driver program.

Multiple Local Directions

Crossing and branching in fiber tracts can be recovered by considering multiple local

directions. By using Gaussian mixture models Eq. 1.22 together with model selection

techniques discussed in Ch. 5, it is possible to recover multiple local directions from

a single voxel when the diffusion profile supports crossing or branching. When more

than one direction is available, we choose the direction which has the minimum angle

difference between itself and the reference direction so that the reconstructed tract

does not turn shapely.
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Random Sampling of Local Direction

We draw random samples of local direction using covariance of the parameters instead

of deriving a PDF of the local direction. The covariance matrix of the parameters

can be obtained from MLE as described in Ch. 4. Random samples of local direction

are then calculated from the random sample of Euler angles. Using covariance of

parameters to characterize the uncertainty is more philosophic than methods based

on simple factors (Parker et al., 2003). One approach to obtain the covariance is the

bootstrapping method described in Ch. 4. However, our method is different from

similar methods which use bootstrapping to draw samples of local direction (Jones

and Pierpaoli, 2005) in that we draw random samples from the covariance matrix,

instead of calculating from diffusion-weighted data directly. We estimate the co-

variance matrix by asymptotic normality, which requires less computation than the

bootstrapping method does. Our approach follows frequentist inference, which is an

alternative approach of Bayesian inference (Behrens et al., 2003).

We draw a random sample of local direction by drawing a sample of the param-

eter vector from multivariate normal distribution. We take the matrix L from the

covariance matrix Σ of the ML estimator described in Ch. 4, such that

Σ = LLT , (6.2)

and draw a sample of the parameter vector from multivariate normal distribution by

x = p̂ + L ∗ z, (6.3)

where p̂ is the estimator of the parameters, and the vector z is multivariate normally

distributed. The lower triangular matrix L can be obtained from Σ by the Cholesky

decomposition. Local direction is then calculated from the random samples x in the

same way as from the estimated parameter vector p̂.
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The driver program is executed multiple times to generate multiple streamline

samples from the same seed point.

The uncertainty of the local direction is decided by both the model and the data.

The variance will be smaller if a model fits the data better than another model does.

Once the model has been decided, the variance is affected by the diffusion-weighted

data. The uncertainty is smaller for data with higher overall SNR, leading to less

spreading tracts with higher precision.

6.3 Results

Multiple Local Directions

Multiple local orientations are recovered using the biGaussian model from the crossing

region of the rat phantom. However, the quality of these multiple orientations is often

not good enough to support the streamline method in our test.

Uncertainty

We illustrate the uncertainty of local orientations by drawing random samples from

the multivariate normal distribution decided by the asymptotic covariance matrix of

the ML estimators.

The uncertainty of local orientations of an anisotropic voxel within a single fiber

tract is shown in Fig. 6.2. From the samples we can see that the distribution is narrow

and using the direction obtained from the estimated parameter does not introduce

much error to the fiber tract.

Uncertainty of the local direction in a voxel within the crossing area is illustrated

in Fig. 6.3. The same diffusion profile is fit to both the diffusion tensor model and the

biGaussian model. Uncertainty of the local direction recovered from diffusion tensor

model is shown in Fig. 6.3(a). The uncertainty of the local direction is large, because

the planar-shaped tensor has eigenvalues satisfying λ1 ≈ λ2 > λ3, which make the
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Figure 6.2: Local direction uncertainty of an anisotropic voxel within a single fiber
tract of the rat phantom. Local directions are plotted in spherical coordinates.

uncertainty of the principal eigenvector large. However, it does not indicate that the

diffusion tensor model does not describe the diffusion profile of a crossing structure

well. When the same data is fit to the biGaussian model, the two orientations have

smaller uncertainty, as shown in Figs. 6.3(b) and 6.3(c). If the uncertainty is not

considered in tractography, the directions from biGaussian model is acceptable be-

cause the distribution of recovered directions is approximately as narrow as that of

the anisotropic voxel shown in Fig. 6.2. If we consider the uncertainty, local direction

from the diffusion tensor model should not prevent a more sophisticated tracking

algorithm from overcoming the crossing voxel because a large range of direction is

returned. However, the local model does not provide much information in this case

as the distribution covers a large potion of the unit sphere.

Generally, the uncertainty of local direction is small in the center of fiber tracts.,

while it is large within the area of fiber crossing or fiber curving. The uncertainty is

also large on the boundary of the fiber tracts where anisotropy is lower than that of

the center of the tracts because of the PVE.
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(a) fit to diffusion tensor model
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(b) the first orientation of biGaussian model
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(c) the second orientation of biGaussian model

Figure 6.3: Local direction uncertainty of fitting a voxel containing fiber crossing
structure to the diffusion tensor model and the biGaussian model. Local directions
are plotted in spherical coordinates.

Tracking

With random sampling of streamlines, we are able to recover fiber crossing from the

rat phantom data. Fiber tracking results of the rat phantom is shown in Fig. 6.4.

The parameters of streamline tracking are the same as those used in Fig. 6.1. The

two seed points are the same as the ones used in Fig. 6.1 and 200 random samples

are drawn.

The reconstructed tracts cover most part of the rat spinal cords except the lower

part of the curving one. Drawing random samples of local orientation is better than
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Figure 6.4: Fiber tracts of the rat phantom reconstructed by the streamline method
with random sampling. The tracts are overlaid with FA map and the seed points
are marked as “×”. The two directions of a tract from the seed point are plotted in
different colors.

just randomly perturbing the recovered local orientation. When the tract is within

higher anisotropy regions, the uncertainty of the local orientations is relatively small;

the uncertainty is larger near the crossing or the curving areas, because the covariance

of the fitting result is larger within these areas.

The cingulum tracts and a tract within the corpus callosum constructed form the

human brain data are shown in Fig. 6.5. The three seed points are manually selected

on the FA map. The cingulum tracts are difficult to reconstruct because they are

relatively thin and surround the corpus callosum, which is strong in anisotropy. The

cingulum tracts reconstructed by our method follow the expected paths.

6.4 Discussion

The tracking algorithm presented in this chapter is a direct application of the mod-

eling approach described in Ch. 4.

Similar to other probabilistic tractography algorithms (Behrens et al., 2003; Parker

et al., 2003), samples of local fiber orientations are used to create streamlines and these

streamlines are regarded as samples of global connectivity. The global connectivity

presented by these streamlines includes possible fiber tracts from the seed point,
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(a) a tract within the corpus callosum

(b) the cingulum tract (left) (c) the cingulum tract (right)

Figure 6.5: Fiber tracts of the human brain data reconstructed by the streamline
method with random sampling. The tracts are overlaid with FA map and the seed
points are marked as “×”. The corpus callosum tract is plotted on a coronal slice
and the cingulum tracts are plotted on sagittal slices. The two directions of a tract
from the seed point are plotted in different colors.

considering the uncertainty caused by imaging noise in the given data. Imaging

artifacts, inadequacy of the diffusion models caused by partial volume averaging of

fiber orientations, and limited angular and spatial resolution also contribute to the

uncertainty of local orientation. Therefore, care should be taken when interpreting

the global connectivity.

The result shows that our tractography algorithm together with the biGaussian

model is capable of reconstructing fiber tracts with crossing structure. Although the

deterministic streamline method has difficulty passing through the crossing region

in the phantom data, it is possible for our probabilistic algorithm to overcome the
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crossing structure even with the diffusion tensor model. It is because the uncertainty

of the fiber orientations recovered by the diffusion tensor model is so large that it

covers a large portion of all the directions. However, using an inadequate diffusion

model to recover local tract orientations may result in more artifacts in the global

connectivity. Therefore, another way of interpreting the local orientation uncertainty

of a voxel is that the amount of uncertainty indicates how reliable the reconstructed

tracts are when passing this voxel.

The Gaussian mixture model is not able to describe the continuity of the ori-

entation of a curving tract within a voxel. It is also a limitation for the diffusion

orientation distribution function presentation used in q-ball imaging (Tuch, 2004).

Copyright c© Ning Cao, 2013.
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Chapter 7 Conclusion and Future Work

This dissertation presents my research work on using HARDI data to recover local

tract orientations and reconstruct fiber pathways in human brain. It generally follows

the frequentist approach. The work involves estimating noise parameter in diffusion-

weighted images, model selection, and utilizing local tract orientations to reconstruct

fiber pathways. In this chapter, I provide a summary of the dissertation work and

future research possibilities.

7.1 Research Accomplishments

Reconstructing fiber pathways non-invasively is an important application of DWI. It

generally includes recovering local tract orientations from each voxel and reconstruct-

ing fiber pathways from local orientations. The performance of the diffusion tensor

model is good when there is only one tract orientation within the voxels. Recovering

multiple tract orientations from the same voxel is the topic of ongoing research. The

dissertation starts with the study of noise distribution of diffusion-weighted images.

Then it focuses on recovering multiple tract orientations from a single voxel by fitting

Gaussian mixture models to data. In addition to fitting diffusion models to data, we

collect the likelihood values for model selection and estimate the covariance matrix of

the estimated parameters for probabilistic tractography. When more than one model

is fitted to data, we carry out model selection to choose a model from two nested

models or from a set of candidate models to avoid overfitting. We also extend the

streamline method to enable probabilistic tracking by sampling the covariance matrix

of the estimated parameters so that we provide many possible fiber tracts instead of

a single tract.

We evaluate the methods proposed in this work with simulations. For phantom
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experiments, we mainly use the rat phantom data because it is acquired with a large

number of gradient directions, achieving a higher angular resolution and a greater

overall SNR. Another advantage of the rat phantom is that motion artifacts are

minimized because the rat spinal cords are embedded in agar. As a result, we can

focus on evaluating our algorithms with known fiber tracts.

7.2 Future Research Possibilities

Noise Estimation

Determining the optimum scanning parameters is not a straightforward task in dif-

fusion MRI (Tournier et al., 2011). Images acquired from a large number of gradient

directions are required to capture the complex diffusion profile caused by multiple

fiber orientations within the same voxel. On the other hand, we also want to decrease

voxel size to minimize PVE so that simpler models are sufficient. Both increasing

gradient directions and decreasing voxel size require longer total acquisition time to

maintain a fair SNR. However, longer acquisition time allows more motion artifacts.

Therefore, we need make trade-offs between these parameters by studying the noise

characteristics in diffusion-weighted images and their effect in different applications

to determine better scanning parameters for different purposes.

Apparent Diffusion Coefficient Estimation

Multiple repeated scans are preferred to more gradient directions in the sense that

motion-induced mis-registration between scans can be easily identified (Tournier

et al., 2011). These two approaches do not make much difference in the diffusion

tensor model. However, when fitting more complex models, a large number of gradi-

ent directions are often considered essential. It is possible to assess image quality by

the power spectrum of ADC profile.
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Fitting Diffusion Models to Data and Model Selection

The diffusion tensor model is considered sufficient when the voxel is within a single

tract. It is also used where the fiber tract only occupies part of the voxel. We should

carefully investigate the effect on anisotropy indices caused by anisotropic diffusion

and isotropic diffusion mixed in the same voxel, because anisotropy indices are often

used as features in group studies.

The method proposed in Ch. 4 depends on numerical optimization. Better opti-

mization algorithms and implementations are always desired. As mentioned in Ch. 4,

fitting the Gaussian mixture model is not always numerically stable. We should

determine the angular resolution and the level of image quality at which Gaussian

mixture model with different number of compartments can be recovered.

The techniques described in Ch. 5 use goodness-of-fit of the diffusion-weighted

signals as the model selection criteria. When local tract orientation is the major

interest, it is desired to develop techniques that use the parameters being estimated

as the major criteria. For example, a planar-shaped tensor may describe the ADC

profile of a voxel containing fiber crossing well, especially when the angular resolution

is low. However, the diffusion tensor model is unable to recover the underlying local

orientations.

Tractography

Tractography techniques are promising in reconstructing major white matter fiber

tracts. However, improvements in tractography algorithms are always desired, espe-

cially when the fiber tract of interest is relatively thin. It is possible to incorporate

the method proposed in Ch. 6 into shape models of tract templates, which can be

obtained from brain atlases, to improve the tracking accuracy of tracts of interest

in group studies, because the anatomy of important fiber tracts are generally known

and the major concern is to locate the same fiber tracts across different individuals.
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